社区日报 第2期 (2017-07-31)
1. Logstash Persistent Queue http://t.cn/R9ctBCQ
Logstash 5.x 新加入了持久化队列功能,想要了解的同学不妨看看官网的这篇介绍哦!
2. 在Elasticsearch中应用机器学习排序LTR http://t.cn/RX2AVnS
相信不少同学在开发中遇到过修改排序结果的需求,常见的操作是使用function_score 来自定义排序分值,但要做到个性化搜索的话,往往离不开数据挖掘、机器学习的算法,那么如何整合这些算法到Elasticsearch中呢?该文提供了一个思路,推荐阅读,开阔视野!
3.用ElasticSearch搭建自己的搜索和分析引擎 http://t.cn/R9can85
来看下腾讯WeTest团队是如何调研和测试 Elasticsearch的,文章中提到的论坛统计分析功能是一个常见的需求,推荐大家阅读并实践!
4.X-Pack Machine Learning Online Training http://t.cn/R9c6vnt
价值 $400 的 elastic 机器学习在线教程免费啦!免费啦!免费啦!还不赶紧去注册!
编辑:rockybean
归档:https://elasticsearch.cn/article/202
订阅:https://tinyletter.com/elastic-daily
继续阅读 »
Logstash 5.x 新加入了持久化队列功能,想要了解的同学不妨看看官网的这篇介绍哦!
2. 在Elasticsearch中应用机器学习排序LTR http://t.cn/RX2AVnS
相信不少同学在开发中遇到过修改排序结果的需求,常见的操作是使用function_score 来自定义排序分值,但要做到个性化搜索的话,往往离不开数据挖掘、机器学习的算法,那么如何整合这些算法到Elasticsearch中呢?该文提供了一个思路,推荐阅读,开阔视野!
3.用ElasticSearch搭建自己的搜索和分析引擎 http://t.cn/R9can85
来看下腾讯WeTest团队是如何调研和测试 Elasticsearch的,文章中提到的论坛统计分析功能是一个常见的需求,推荐大家阅读并实践!
4.X-Pack Machine Learning Online Training http://t.cn/R9c6vnt
价值 $400 的 elastic 机器学习在线教程免费啦!免费啦!免费啦!还不赶紧去注册!
编辑:rockybean
归档:https://elasticsearch.cn/article/202
订阅:https://tinyletter.com/elastic-daily
1. Logstash Persistent Queue http://t.cn/R9ctBCQ
Logstash 5.x 新加入了持久化队列功能,想要了解的同学不妨看看官网的这篇介绍哦!
2. 在Elasticsearch中应用机器学习排序LTR http://t.cn/RX2AVnS
相信不少同学在开发中遇到过修改排序结果的需求,常见的操作是使用function_score 来自定义排序分值,但要做到个性化搜索的话,往往离不开数据挖掘、机器学习的算法,那么如何整合这些算法到Elasticsearch中呢?该文提供了一个思路,推荐阅读,开阔视野!
3.用ElasticSearch搭建自己的搜索和分析引擎 http://t.cn/R9can85
来看下腾讯WeTest团队是如何调研和测试 Elasticsearch的,文章中提到的论坛统计分析功能是一个常见的需求,推荐大家阅读并实践!
4.X-Pack Machine Learning Online Training http://t.cn/R9c6vnt
价值 $400 的 elastic 机器学习在线教程免费啦!免费啦!免费啦!还不赶紧去注册!
编辑:rockybean
归档:https://elasticsearch.cn/article/202
订阅:https://tinyletter.com/elastic-daily 收起阅读 »
Logstash 5.x 新加入了持久化队列功能,想要了解的同学不妨看看官网的这篇介绍哦!
2. 在Elasticsearch中应用机器学习排序LTR http://t.cn/RX2AVnS
相信不少同学在开发中遇到过修改排序结果的需求,常见的操作是使用function_score 来自定义排序分值,但要做到个性化搜索的话,往往离不开数据挖掘、机器学习的算法,那么如何整合这些算法到Elasticsearch中呢?该文提供了一个思路,推荐阅读,开阔视野!
3.用ElasticSearch搭建自己的搜索和分析引擎 http://t.cn/R9can85
来看下腾讯WeTest团队是如何调研和测试 Elasticsearch的,文章中提到的论坛统计分析功能是一个常见的需求,推荐大家阅读并实践!
4.X-Pack Machine Learning Online Training http://t.cn/R9c6vnt
价值 $400 的 elastic 机器学习在线教程免费啦!免费啦!免费啦!还不赶紧去注册!
编辑:rockybean
归档:https://elasticsearch.cn/article/202
订阅:https://tinyletter.com/elastic-daily 收起阅读 »
社区日报 第1期 (2017-07-30)
1. A Practical Introduction to Elasticsearch http://t.cn/R9tzos1
通过实际案例介绍Elasticsearch,作为入门教程还是不错的,推荐新手阅读!
2. Elasticsearch 5.0 General Performance Recommendations http://t.cn/R9tz3Vc
关注性能的同学有福了,来看看qbox工程师对于 5.0 调优的建议,干货满满,不要错过哦!
3. Filebeat vs. Logstash — The Evolution of a Log Shipper http://t.cn/R9tZBFq
相信不少同学对于 Beats 和 Logstash的定位有疑惑,不妨看下这篇文章!
编辑:rockybean
归档:https://elasticsearch.cn/article/201
订阅:https://tinyletter.com/elastic-daily
继续阅读 »
通过实际案例介绍Elasticsearch,作为入门教程还是不错的,推荐新手阅读!
2. Elasticsearch 5.0 General Performance Recommendations http://t.cn/R9tz3Vc
关注性能的同学有福了,来看看qbox工程师对于 5.0 调优的建议,干货满满,不要错过哦!
3. Filebeat vs. Logstash — The Evolution of a Log Shipper http://t.cn/R9tZBFq
相信不少同学对于 Beats 和 Logstash的定位有疑惑,不妨看下这篇文章!
编辑:rockybean
归档:https://elasticsearch.cn/article/201
订阅:https://tinyletter.com/elastic-daily
1. A Practical Introduction to Elasticsearch http://t.cn/R9tzos1
通过实际案例介绍Elasticsearch,作为入门教程还是不错的,推荐新手阅读!
2. Elasticsearch 5.0 General Performance Recommendations http://t.cn/R9tz3Vc
关注性能的同学有福了,来看看qbox工程师对于 5.0 调优的建议,干货满满,不要错过哦!
3. Filebeat vs. Logstash — The Evolution of a Log Shipper http://t.cn/R9tZBFq
相信不少同学对于 Beats 和 Logstash的定位有疑惑,不妨看下这篇文章!
编辑:rockybean
归档:https://elasticsearch.cn/article/201
订阅:https://tinyletter.com/elastic-daily
收起阅读 »
通过实际案例介绍Elasticsearch,作为入门教程还是不错的,推荐新手阅读!
2. Elasticsearch 5.0 General Performance Recommendations http://t.cn/R9tz3Vc
关注性能的同学有福了,来看看qbox工程师对于 5.0 调优的建议,干货满满,不要错过哦!
3. Filebeat vs. Logstash — The Evolution of a Log Shipper http://t.cn/R9tZBFq
相信不少同学对于 Beats 和 Logstash的定位有疑惑,不妨看下这篇文章!
编辑:rockybean
归档:https://elasticsearch.cn/article/201
订阅:https://tinyletter.com/elastic-daily
收起阅读 »
[招聘] ?Elastic 邀您一起共创开源事业 ❄️
想不想去最棒的开源软件公司工作?
想不想不用朝9晚5浪费大量时间在路上,在家就能办公?
想不想让您的代码运行在成千上万台服务器上面,拯救世界?
想不想工作与生活的完美结合,做自己感兴趣的事情?
... ...
那考虑来Elastic吧,与全球顶尖工程师一起合作,福利待遇从优,一年至少2次出国机会。
基本要求:
- 英语流利沟通
- 掌握现代开发技术
- 贡献过Elastic相关开源项目者优先
下面是热招职位,位置不限,We are Distributed!
- 社区技术布道师
- 技术支持工程师
- 技术顾问
- 业务架构师
- Elasticsearch - Java Engineer - Search
- Elasticsearch - Java Engineer - Security
- Elasticsearch - Java Performance Engineer
- Elasticsearch - Senior Java Engineer (Core Team)
- Beats - Golang Engineer
- Logstash - Ruby Engineer
- Kibana - Platform JavaScript Engineer (Node.js)
- Kibana - Senior JavaScript Engineer
- Kibana - Visualisations & Vega Engineer
- UI Engineer - Design
- SecOps - JavaScript Engineer
- SRE- Infrastructure - Site Reliability Engineer
- InfoSec - Sr. Security Engineer
除了上面这些,还有很多其他市场商务类职务,
查看 Elastic 全部在招职位信息,点击这里!
关于 Elastic
Elastic 致力于构建大规模实时数据处理软件,场景主要涵盖搜索、日志、安全与数据分析等领域。公司成立于 2012 年,旗下拥有产品:开源的 Elastic Stack(Elasticsearch、Kibana、Beats 和 Logstash)、 X-Pack (商业特性)和 Elastic Cloud (一个 SaaS 服务)。迄今为止,这些产品的累积下载次数已超过 3.5 亿。
成千上万的企业包括思科、易趣、高盛、美国宇航局、微软、梅约诊所、纽约时报、维基百科以及微讯通信等都在使用 Elastic 来助力其关键业务应用。
Elastic 由 Benchmark Capital、Index Ventures 及 NEA 投资,投资额超过 1 亿美金。Elastic 拥有超过 1000 位员工,分布于世界上 30 多个国家和地区。了解更多请访问: elastic.co 。
想不想去最棒的开源软件公司工作?
想不想不用朝9晚5浪费大量时间在路上,在家就能办公?
想不想让您的代码运行在成千上万台服务器上面,拯救世界?
想不想工作与生活的完美结合,做自己感兴趣的事情?
... ...
那考虑来Elastic吧,与全球顶尖工程师一起合作,福利待遇从优,一年至少2次出国机会。
基本要求:
- 英语流利沟通
- 掌握现代开发技术
- 贡献过Elastic相关开源项目者优先
下面是热招职位,位置不限,We are Distributed!
- 社区技术布道师
- 技术支持工程师
- 技术顾问
- 业务架构师
- Elasticsearch - Java Engineer - Search
- Elasticsearch - Java Engineer - Security
- Elasticsearch - Java Performance Engineer
- Elasticsearch - Senior Java Engineer (Core Team)
- Beats - Golang Engineer
- Logstash - Ruby Engineer
- Kibana - Platform JavaScript Engineer (Node.js)
- Kibana - Senior JavaScript Engineer
- Kibana - Visualisations & Vega Engineer
- UI Engineer - Design
- SecOps - JavaScript Engineer
- SRE- Infrastructure - Site Reliability Engineer
- InfoSec - Sr. Security Engineer
除了上面这些,还有很多其他市场商务类职务,
查看 Elastic 全部在招职位信息,点击这里!
关于 Elastic
Elastic 致力于构建大规模实时数据处理软件,场景主要涵盖搜索、日志、安全与数据分析等领域。公司成立于 2012 年,旗下拥有产品:开源的 Elastic Stack(Elasticsearch、Kibana、Beats 和 Logstash)、 X-Pack (商业特性)和 Elastic Cloud (一个 SaaS 服务)。迄今为止,这些产品的累积下载次数已超过 3.5 亿。
成千上万的企业包括思科、易趣、高盛、美国宇航局、微软、梅约诊所、纽约时报、维基百科以及微讯通信等都在使用 Elastic 来助力其关键业务应用。
Elastic 由 Benchmark Capital、Index Ventures 及 NEA 投资,投资额超过 1 亿美金。Elastic 拥有超过 1000 位员工,分布于世界上 30 多个国家和地区。了解更多请访问: elastic.co 。 收起阅读 »
【急聘】搜索推荐系统研发工程师 12-20K
岗位职责:
1,负责个性化推荐系统的算法和架构研发, 实现在相关产品中的精准推荐;
2,负责产品、内容的推荐与其他场景的基础数据挖掘;
3,根据海量用户行为的分析和挖掘,构建用户画像、标签系统等。
任职要求:
1、两年以上相关工作经验;
2、有推荐系统或搜索排序研发经验, 熟悉常用的推荐算法,有实际算法调优经验;
3、熟悉Hadoop、HBase、Spark、Kafka等计算平台和工具;
4、掌握自然语言处理、协同推荐算法方面的基本知识;
5、良好的沟通和学习能力,团队合作精神,能独立承担工作。
加分项:
1,有大规模海量数据机器学习、数据挖掘、计算广告、搜索引擎相关经验;
2,有互联网电商行业数据经验。
易所试集团(Www.liketry.com),新三板上市公司,市值10亿左右,组建北京研发中心,13薪起,正常基数五险一金并提供商业保险(补充医疗+意外等),10天年假起,弹性工作制,薪资可根据能力商议。工作地点:北京望京SOHO,简历请发送至邮箱:hang.song@liketry.com。
继续阅读 »
1,负责个性化推荐系统的算法和架构研发, 实现在相关产品中的精准推荐;
2,负责产品、内容的推荐与其他场景的基础数据挖掘;
3,根据海量用户行为的分析和挖掘,构建用户画像、标签系统等。
任职要求:
1、两年以上相关工作经验;
2、有推荐系统或搜索排序研发经验, 熟悉常用的推荐算法,有实际算法调优经验;
3、熟悉Hadoop、HBase、Spark、Kafka等计算平台和工具;
4、掌握自然语言处理、协同推荐算法方面的基本知识;
5、良好的沟通和学习能力,团队合作精神,能独立承担工作。
加分项:
1,有大规模海量数据机器学习、数据挖掘、计算广告、搜索引擎相关经验;
2,有互联网电商行业数据经验。
易所试集团(Www.liketry.com),新三板上市公司,市值10亿左右,组建北京研发中心,13薪起,正常基数五险一金并提供商业保险(补充医疗+意外等),10天年假起,弹性工作制,薪资可根据能力商议。工作地点:北京望京SOHO,简历请发送至邮箱:hang.song@liketry.com。
岗位职责:
1,负责个性化推荐系统的算法和架构研发, 实现在相关产品中的精准推荐;
2,负责产品、内容的推荐与其他场景的基础数据挖掘;
3,根据海量用户行为的分析和挖掘,构建用户画像、标签系统等。
任职要求:
1、两年以上相关工作经验;
2、有推荐系统或搜索排序研发经验, 熟悉常用的推荐算法,有实际算法调优经验;
3、熟悉Hadoop、HBase、Spark、Kafka等计算平台和工具;
4、掌握自然语言处理、协同推荐算法方面的基本知识;
5、良好的沟通和学习能力,团队合作精神,能独立承担工作。
加分项:
1,有大规模海量数据机器学习、数据挖掘、计算广告、搜索引擎相关经验;
2,有互联网电商行业数据经验。
易所试集团(Www.liketry.com),新三板上市公司,市值10亿左右,组建北京研发中心,13薪起,正常基数五险一金并提供商业保险(补充医疗+意外等),10天年假起,弹性工作制,薪资可根据能力商议。工作地点:北京望京SOHO,简历请发送至邮箱:hang.song@liketry.com。 收起阅读 »
1,负责个性化推荐系统的算法和架构研发, 实现在相关产品中的精准推荐;
2,负责产品、内容的推荐与其他场景的基础数据挖掘;
3,根据海量用户行为的分析和挖掘,构建用户画像、标签系统等。
任职要求:
1、两年以上相关工作经验;
2、有推荐系统或搜索排序研发经验, 熟悉常用的推荐算法,有实际算法调优经验;
3、熟悉Hadoop、HBase、Spark、Kafka等计算平台和工具;
4、掌握自然语言处理、协同推荐算法方面的基本知识;
5、良好的沟通和学习能力,团队合作精神,能独立承担工作。
加分项:
1,有大规模海量数据机器学习、数据挖掘、计算广告、搜索引擎相关经验;
2,有互联网电商行业数据经验。
易所试集团(Www.liketry.com),新三板上市公司,市值10亿左右,组建北京研发中心,13薪起,正常基数五险一金并提供商业保险(补充医疗+意外等),10天年假起,弹性工作制,薪资可根据能力商议。工作地点:北京望京SOHO,简历请发送至邮箱:hang.song@liketry.com。 收起阅读 »
【携程招聘】高级搜索研发工程师
岗位职责:
负责参与搜索业务的系统架构及研发,对现有搜索业务系统进行改进和优化
1.负责搜索服务端的开发工作;
2. 负责分词,索引和查询的算法优化;
3.研究数据的存储、传输,优化系统架构,不断提升系统时效性、灵活性及性能;
4. 对代码和设计质量有严格要求,重视Code Review,知道良好编程习惯的标准;
5. 参与搜索系统分布式架构设计,研究分布式信息检索的服务架构,分析和修改相关性算法、策略,构建高性能,灵活易调研的分布式检索系统。
任职要求:
1. 计算机或相关专业本科及以上学历,2年以上搜索引擎相关的研发经验;
2. 有自然语言处理、相关性算法、rerank等经验者或数据挖掘实践经验者优先;
3. 深刻理解企业应用设计模式,有大型分布式,高并发,高负载,高可用性系统设计开发经验;
4. 有扎实的Java基础(熟悉io、多线程、集合等基础框架,熟悉分布式、缓存、消息、搜索等机制) ;
5. 熟悉Elasticsearch 对分布式搜索有一定实战经验;
6. 对互联网产品敏感,学习能力强
7. 熟悉数理统计和机器学习的基础理论,并有一定的实战经验者优先(可选);
8. 熟悉常见机器学习排序方法,如:GBDT、LTR或随机森林,熟悉特征处理方法者优先(可选);
薪酬范围:
10k - 20k /月 + 年终奖
有意者邮件联系: ckjiang@ctrip.com
继续阅读 »
负责参与搜索业务的系统架构及研发,对现有搜索业务系统进行改进和优化
1.负责搜索服务端的开发工作;
2. 负责分词,索引和查询的算法优化;
3.研究数据的存储、传输,优化系统架构,不断提升系统时效性、灵活性及性能;
4. 对代码和设计质量有严格要求,重视Code Review,知道良好编程习惯的标准;
5. 参与搜索系统分布式架构设计,研究分布式信息检索的服务架构,分析和修改相关性算法、策略,构建高性能,灵活易调研的分布式检索系统。
任职要求:
1. 计算机或相关专业本科及以上学历,2年以上搜索引擎相关的研发经验;
2. 有自然语言处理、相关性算法、rerank等经验者或数据挖掘实践经验者优先;
3. 深刻理解企业应用设计模式,有大型分布式,高并发,高负载,高可用性系统设计开发经验;
4. 有扎实的Java基础(熟悉io、多线程、集合等基础框架,熟悉分布式、缓存、消息、搜索等机制) ;
5. 熟悉Elasticsearch 对分布式搜索有一定实战经验;
6. 对互联网产品敏感,学习能力强
7. 熟悉数理统计和机器学习的基础理论,并有一定的实战经验者优先(可选);
8. 熟悉常见机器学习排序方法,如:GBDT、LTR或随机森林,熟悉特征处理方法者优先(可选);
薪酬范围:
10k - 20k /月 + 年终奖
有意者邮件联系: ckjiang@ctrip.com
岗位职责:
负责参与搜索业务的系统架构及研发,对现有搜索业务系统进行改进和优化
1.负责搜索服务端的开发工作;
2. 负责分词,索引和查询的算法优化;
3.研究数据的存储、传输,优化系统架构,不断提升系统时效性、灵活性及性能;
4. 对代码和设计质量有严格要求,重视Code Review,知道良好编程习惯的标准;
5. 参与搜索系统分布式架构设计,研究分布式信息检索的服务架构,分析和修改相关性算法、策略,构建高性能,灵活易调研的分布式检索系统。
任职要求:
1. 计算机或相关专业本科及以上学历,2年以上搜索引擎相关的研发经验;
2. 有自然语言处理、相关性算法、rerank等经验者或数据挖掘实践经验者优先;
3. 深刻理解企业应用设计模式,有大型分布式,高并发,高负载,高可用性系统设计开发经验;
4. 有扎实的Java基础(熟悉io、多线程、集合等基础框架,熟悉分布式、缓存、消息、搜索等机制) ;
5. 熟悉Elasticsearch 对分布式搜索有一定实战经验;
6. 对互联网产品敏感,学习能力强
7. 熟悉数理统计和机器学习的基础理论,并有一定的实战经验者优先(可选);
8. 熟悉常见机器学习排序方法,如:GBDT、LTR或随机森林,熟悉特征处理方法者优先(可选);
薪酬范围:
10k - 20k /月 + 年终奖
有意者邮件联系: ckjiang@ctrip.com 收起阅读 »
负责参与搜索业务的系统架构及研发,对现有搜索业务系统进行改进和优化
1.负责搜索服务端的开发工作;
2. 负责分词,索引和查询的算法优化;
3.研究数据的存储、传输,优化系统架构,不断提升系统时效性、灵活性及性能;
4. 对代码和设计质量有严格要求,重视Code Review,知道良好编程习惯的标准;
5. 参与搜索系统分布式架构设计,研究分布式信息检索的服务架构,分析和修改相关性算法、策略,构建高性能,灵活易调研的分布式检索系统。
任职要求:
1. 计算机或相关专业本科及以上学历,2年以上搜索引擎相关的研发经验;
2. 有自然语言处理、相关性算法、rerank等经验者或数据挖掘实践经验者优先;
3. 深刻理解企业应用设计模式,有大型分布式,高并发,高负载,高可用性系统设计开发经验;
4. 有扎实的Java基础(熟悉io、多线程、集合等基础框架,熟悉分布式、缓存、消息、搜索等机制) ;
5. 熟悉Elasticsearch 对分布式搜索有一定实战经验;
6. 对互联网产品敏感,学习能力强
7. 熟悉数理统计和机器学习的基础理论,并有一定的实战经验者优先(可选);
8. 熟悉常见机器学习排序方法,如:GBDT、LTR或随机森林,熟悉特征处理方法者优先(可选);
薪酬范围:
10k - 20k /月 + 年终奖
有意者邮件联系: ckjiang@ctrip.com 收起阅读 »
es中的jdbc,如何使用多次的lastexecutionstart.
在jdbc中,如果需要多少使用到时间的值。如果使用lastexecutionstart,分了两次查询,time不一致。对于初始化和热更新都不一致。例如:
sql : [
{ "statement" : "select * from table1 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] },
{ "statement" : "select * from table2 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] }
],
继续阅读 »
sql : [
{ "statement" : "select * from table1 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] },
{ "statement" : "select * from table2 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] }
],
在jdbc中,如果需要多少使用到时间的值。如果使用lastexecutionstart,分了两次查询,time不一致。对于初始化和热更新都不一致。例如:
sql : [
{ "statement" : "select * from table1 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] },
{ "statement" : "select * from table2 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] }
], 收起阅读 »
sql : [
{ "statement" : "select * from table1 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] },
{ "statement" : "select * from table2 where mytimestamp > ?", "parameter" : [ "$metrics.lastexecutionstart" ] }
], 收起阅读 »
[热招]饿了么搜索推荐研发部招聘信息
饿了么搜索推荐研发部现热招搜索相关人才
投递方式:wei.chen04@ele.me
QQ:2908368828
岗位福利:定期技术分享,良好的技术氛围,超级nice的leader,五险一金+补充商业保险等多种福利政策
薪资:行业内有竞争力的薪资
坐标:上海市普陀区金沙江路,13号线真北路下,地铁出来即是,大热天不怕晒
一、搜索架构工程师
岗位职责:
1、负责在线搜索服务的稳定性,性能,时效性和扩展性;
2、负责构建一套能快速满足多种业务检索需求的通用搜索平台;
3、负责分布式搜索服务架构设计、开发与优化、稳定性监控和维护;
4、关注行业搜索技术,引进和改善搜索架构;
职位要求:
1、本科以上学历 ,3年以上搜索相关工作经验
2、精通Lucene、Elastic Search开发和实战,能够修改Lucene、Elastic Search源代码
3、精通高可用、高并发分布式系统设计,有熟悉分布式搜索系统的架构和运维经验者有些
4、熟练掌握多线程,线程池技术,对网络通信、异步通信、高并发访问、负载均衡等技术有深入了解
5、具有高度的抽象设计能力,思路清晰,善于思考,能独立驱动、分析和解决问题
6、责任心强,良好的沟通交流、团队合作精神、以结果为导向
二、高级搜索工程师(Elasticsearch)
岗位职责:
1、参与平台化的各类搜索相关的功能;
2、参与系统的设计和核心代码的编写;
3、明确搜索业务需求,按时完成指定模块的设计与开发,并确保质量;
4、对自己的代码要求严格,并对已有模块进行优化升级;
5、搜索算法研究及实现,搜索相关扩展应用研发;
6、善于思考,能解决复杂的ES性能调优问题。
任职要求:
1、211本科以上学历,计算机或者相关专业;
2、至少一年Elasticsearch开发经验,一年Java开发经验;
3、掌握搜索引擎基本原理、相关检索、排序算法和数据结构,良好的数据结构基础;
4、熟悉Java开发语言,熟悉Spring MVC、iBatis、netty等主流框架,熟练使用eclipse等开发工具;
5、熟悉MySQL数据库应用;
6、熟悉lucene,ELK生态,大数据平台优先;
7、对技术富有激情,对新技术有了解,思路清晰;
8、工作态度积极、踏实、认真,有责任感,有团队合作意识;
欢迎大家推荐或者自荐~
继续阅读 »
投递方式:wei.chen04@ele.me
QQ:2908368828
岗位福利:定期技术分享,良好的技术氛围,超级nice的leader,五险一金+补充商业保险等多种福利政策
薪资:行业内有竞争力的薪资
坐标:上海市普陀区金沙江路,13号线真北路下,地铁出来即是,大热天不怕晒
一、搜索架构工程师
岗位职责:
1、负责在线搜索服务的稳定性,性能,时效性和扩展性;
2、负责构建一套能快速满足多种业务检索需求的通用搜索平台;
3、负责分布式搜索服务架构设计、开发与优化、稳定性监控和维护;
4、关注行业搜索技术,引进和改善搜索架构;
职位要求:
1、本科以上学历 ,3年以上搜索相关工作经验
2、精通Lucene、Elastic Search开发和实战,能够修改Lucene、Elastic Search源代码
3、精通高可用、高并发分布式系统设计,有熟悉分布式搜索系统的架构和运维经验者有些
4、熟练掌握多线程,线程池技术,对网络通信、异步通信、高并发访问、负载均衡等技术有深入了解
5、具有高度的抽象设计能力,思路清晰,善于思考,能独立驱动、分析和解决问题
6、责任心强,良好的沟通交流、团队合作精神、以结果为导向
二、高级搜索工程师(Elasticsearch)
岗位职责:
1、参与平台化的各类搜索相关的功能;
2、参与系统的设计和核心代码的编写;
3、明确搜索业务需求,按时完成指定模块的设计与开发,并确保质量;
4、对自己的代码要求严格,并对已有模块进行优化升级;
5、搜索算法研究及实现,搜索相关扩展应用研发;
6、善于思考,能解决复杂的ES性能调优问题。
任职要求:
1、211本科以上学历,计算机或者相关专业;
2、至少一年Elasticsearch开发经验,一年Java开发经验;
3、掌握搜索引擎基本原理、相关检索、排序算法和数据结构,良好的数据结构基础;
4、熟悉Java开发语言,熟悉Spring MVC、iBatis、netty等主流框架,熟练使用eclipse等开发工具;
5、熟悉MySQL数据库应用;
6、熟悉lucene,ELK生态,大数据平台优先;
7、对技术富有激情,对新技术有了解,思路清晰;
8、工作态度积极、踏实、认真,有责任感,有团队合作意识;
欢迎大家推荐或者自荐~
饿了么搜索推荐研发部现热招搜索相关人才
投递方式:wei.chen04@ele.me
QQ:2908368828
岗位福利:定期技术分享,良好的技术氛围,超级nice的leader,五险一金+补充商业保险等多种福利政策
薪资:行业内有竞争力的薪资
坐标:上海市普陀区金沙江路,13号线真北路下,地铁出来即是,大热天不怕晒
一、搜索架构工程师
岗位职责:
1、负责在线搜索服务的稳定性,性能,时效性和扩展性;
2、负责构建一套能快速满足多种业务检索需求的通用搜索平台;
3、负责分布式搜索服务架构设计、开发与优化、稳定性监控和维护;
4、关注行业搜索技术,引进和改善搜索架构;
职位要求:
1、本科以上学历 ,3年以上搜索相关工作经验
2、精通Lucene、Elastic Search开发和实战,能够修改Lucene、Elastic Search源代码
3、精通高可用、高并发分布式系统设计,有熟悉分布式搜索系统的架构和运维经验者有些
4、熟练掌握多线程,线程池技术,对网络通信、异步通信、高并发访问、负载均衡等技术有深入了解
5、具有高度的抽象设计能力,思路清晰,善于思考,能独立驱动、分析和解决问题
6、责任心强,良好的沟通交流、团队合作精神、以结果为导向
二、高级搜索工程师(Elasticsearch)
岗位职责:
1、参与平台化的各类搜索相关的功能;
2、参与系统的设计和核心代码的编写;
3、明确搜索业务需求,按时完成指定模块的设计与开发,并确保质量;
4、对自己的代码要求严格,并对已有模块进行优化升级;
5、搜索算法研究及实现,搜索相关扩展应用研发;
6、善于思考,能解决复杂的ES性能调优问题。
任职要求:
1、211本科以上学历,计算机或者相关专业;
2、至少一年Elasticsearch开发经验,一年Java开发经验;
3、掌握搜索引擎基本原理、相关检索、排序算法和数据结构,良好的数据结构基础;
4、熟悉Java开发语言,熟悉Spring MVC、iBatis、netty等主流框架,熟练使用eclipse等开发工具;
5、熟悉MySQL数据库应用;
6、熟悉lucene,ELK生态,大数据平台优先;
7、对技术富有激情,对新技术有了解,思路清晰;
8、工作态度积极、踏实、认真,有责任感,有团队合作意识;
欢迎大家推荐或者自荐~
收起阅读 »
投递方式:wei.chen04@ele.me
QQ:2908368828
岗位福利:定期技术分享,良好的技术氛围,超级nice的leader,五险一金+补充商业保险等多种福利政策
薪资:行业内有竞争力的薪资
坐标:上海市普陀区金沙江路,13号线真北路下,地铁出来即是,大热天不怕晒
一、搜索架构工程师
岗位职责:
1、负责在线搜索服务的稳定性,性能,时效性和扩展性;
2、负责构建一套能快速满足多种业务检索需求的通用搜索平台;
3、负责分布式搜索服务架构设计、开发与优化、稳定性监控和维护;
4、关注行业搜索技术,引进和改善搜索架构;
职位要求:
1、本科以上学历 ,3年以上搜索相关工作经验
2、精通Lucene、Elastic Search开发和实战,能够修改Lucene、Elastic Search源代码
3、精通高可用、高并发分布式系统设计,有熟悉分布式搜索系统的架构和运维经验者有些
4、熟练掌握多线程,线程池技术,对网络通信、异步通信、高并发访问、负载均衡等技术有深入了解
5、具有高度的抽象设计能力,思路清晰,善于思考,能独立驱动、分析和解决问题
6、责任心强,良好的沟通交流、团队合作精神、以结果为导向
二、高级搜索工程师(Elasticsearch)
岗位职责:
1、参与平台化的各类搜索相关的功能;
2、参与系统的设计和核心代码的编写;
3、明确搜索业务需求,按时完成指定模块的设计与开发,并确保质量;
4、对自己的代码要求严格,并对已有模块进行优化升级;
5、搜索算法研究及实现,搜索相关扩展应用研发;
6、善于思考,能解决复杂的ES性能调优问题。
任职要求:
1、211本科以上学历,计算机或者相关专业;
2、至少一年Elasticsearch开发经验,一年Java开发经验;
3、掌握搜索引擎基本原理、相关检索、排序算法和数据结构,良好的数据结构基础;
4、熟悉Java开发语言,熟悉Spring MVC、iBatis、netty等主流框架,熟练使用eclipse等开发工具;
5、熟悉MySQL数据库应用;
6、熟悉lucene,ELK生态,大数据平台优先;
7、对技术富有激情,对新技术有了解,思路清晰;
8、工作态度积极、踏实、认真,有责任感,有团队合作意识;
欢迎大家推荐或者自荐~
收起阅读 »
Kibana 新的可视化插件:Vega
Vega:
https://vega.github.io/vega/examples/
Vega是什么?
相比其他第三方可视化库,Vega的目的是让你更快将数据进行展现,vega通过声明的方式可以快速将你的数据进行各种格式化,而不用纠结于具体的调用细节,和SQL这种通用式交互语言类似,数据的输入是JSON。
Vega的Kibana插件下载地址:
https://github.com/nyurik/kibana-vega-vis/releases
安装之后,就能在可视化类型里面选择Vega了,使用起来很简单,输入相应的描叙语言,如:
https://vega.github.io/vega-li ... k-def
https://vega.github.io/vega/examples/
https://github.com/nyurik/kiba ... -demo
继续阅读 »
https://vega.github.io/vega/examples/
Vega是什么?
相比其他第三方可视化库,Vega的目的是让你更快将数据进行展现,vega通过声明的方式可以快速将你的数据进行各种格式化,而不用纠结于具体的调用细节,和SQL这种通用式交互语言类似,数据的输入是JSON。
Vega的Kibana插件下载地址:
https://github.com/nyurik/kibana-vega-vis/releases
安装之后,就能在可视化类型里面选择Vega了,使用起来很简单,输入相应的描叙语言,如:
{
"$schema": "https://vega.github.io/schema/ ... ot%3B,
"description": "A simple bar chart with embedded data.",
"width": 300, "height": 200, "padding": 5,
"data": {
"values": [
{"a": "A","b": 28}, {"a": "B","b": 55}, {"a": "C","b": 43},
{"a": "D","b": 91}, {"a": "E","b": 81}, {"a": "F","b": 53},
{"a": "G","b": 19}, {"a": "H","b": 87}, {"a": "I","b": 52}
]
},
"mark": "bar",
"encoding": {
"x": {"field": "a", "type": "ordinal"},
"y": {"field": "b", "type": "quantitative"}
}
}
Vega支持各种可视化类型,更多详情请参照文档和例子:https://vega.github.io/vega-li ... k-def
https://vega.github.io/vega/examples/
https://github.com/nyurik/kiba ... -demo
Vega:
https://vega.github.io/vega/examples/
Vega是什么?
相比其他第三方可视化库,Vega的目的是让你更快将数据进行展现,vega通过声明的方式可以快速将你的数据进行各种格式化,而不用纠结于具体的调用细节,和SQL这种通用式交互语言类似,数据的输入是JSON。
Vega的Kibana插件下载地址:
https://github.com/nyurik/kibana-vega-vis/releases
安装之后,就能在可视化类型里面选择Vega了,使用起来很简单,输入相应的描叙语言,如:
https://vega.github.io/vega-li ... k-def
https://vega.github.io/vega/examples/
https://github.com/nyurik/kiba ... -demo 收起阅读 »
https://vega.github.io/vega/examples/
Vega是什么?
相比其他第三方可视化库,Vega的目的是让你更快将数据进行展现,vega通过声明的方式可以快速将你的数据进行各种格式化,而不用纠结于具体的调用细节,和SQL这种通用式交互语言类似,数据的输入是JSON。
Vega的Kibana插件下载地址:
https://github.com/nyurik/kibana-vega-vis/releases
安装之后,就能在可视化类型里面选择Vega了,使用起来很简单,输入相应的描叙语言,如:
{
"$schema": "https://vega.github.io/schema/ ... ot%3B,
"description": "A simple bar chart with embedded data.",
"width": 300, "height": 200, "padding": 5,
"data": {
"values": [
{"a": "A","b": 28}, {"a": "B","b": 55}, {"a": "C","b": 43},
{"a": "D","b": 91}, {"a": "E","b": 81}, {"a": "F","b": 53},
{"a": "G","b": 19}, {"a": "H","b": 87}, {"a": "I","b": 52}
]
},
"mark": "bar",
"encoding": {
"x": {"field": "a", "type": "ordinal"},
"y": {"field": "b", "type": "quantitative"}
}
}
Vega支持各种可视化类型,更多详情请参照文档和例子:https://vega.github.io/vega-li ... k-def
https://vega.github.io/vega/examples/
https://github.com/nyurik/kiba ... -demo 收起阅读 »
spark1.6.3+elasticsearch5.4 netty jar冲突
spark1.6.x elasticsearch5.x
netty冲突
```
.put("transport.type","netty3")
```
继续阅读 »
netty冲突
(Netty4Utils:117)-NoSuchMethodError io.netty.buffer.CompositeByteBuf.addComponents(ZLjava/lang/Iterable;)Lio/netty/buffer/CompositeByteBuf;
at org.elasticsearch.transport.netty4.Netty4Utils.toByteBuf(Netty4Utils.Java:78)
at org.elasticsearch.transport.netty4.Netty4Transport.sendMessage(Netty4Transport.java:422)
at org.elasticsearch.transport.netty4.Netty4Transport.sendMessage(Netty4Transport.java:93)
at org.elasticsearch.transport.TcpTransport.internalSendMessage(TcpTransport.java:1058)
at org.elasticsearch.transport.TcpTransport.sendRequestToChannel(TcpTransport.java:1040)
试过其他jar排除方案都不生效,暂时可以fix的解决方案```
.put("transport.type","netty3")
```
spark1.6.x elasticsearch5.x
netty冲突
```
.put("transport.type","netty3")
``` 收起阅读 »
netty冲突
(Netty4Utils:117)-NoSuchMethodError io.netty.buffer.CompositeByteBuf.addComponents(ZLjava/lang/Iterable;)Lio/netty/buffer/CompositeByteBuf;
at org.elasticsearch.transport.netty4.Netty4Utils.toByteBuf(Netty4Utils.Java:78)
at org.elasticsearch.transport.netty4.Netty4Transport.sendMessage(Netty4Transport.java:422)
at org.elasticsearch.transport.netty4.Netty4Transport.sendMessage(Netty4Transport.java:93)
at org.elasticsearch.transport.TcpTransport.internalSendMessage(TcpTransport.java:1058)
at org.elasticsearch.transport.TcpTransport.sendRequestToChannel(TcpTransport.java:1040)
试过其他jar排除方案都不生效,暂时可以fix的解决方案```
.put("transport.type","netty3")
``` 收起阅读 »
招兼职Cassandra培训讲师
企业培训公司面向单位员工培训,长期招Cassandra兼职老师,一般三天左右的短周期培训,周末为主,有2人左右的小辅导,也有30人左右的培训大班,待遇优,北京,上海,成都,广州,深圳等,如您想挣点外块,积累资源,充实生活,请联系我。
要求:
相关技术专业,本科及以上学历;
三年以上实际项目经验;
认真,热情,耐心,乐于助人,不保守,表达能力较好。具体再议。
感兴趣的可以联系:QQ 2355811930 ;QQ1489302364,微信15501239699,简历接收邮箱:admin@info-soft.cn
企业培训公司面向单位员工培训,长期招Cassandra兼职老师,一般三天左右的短周期培训,周末为主,有2人左右的小辅导,也有30人左右的培训大班,待遇优,北京,上海,成都,广州,深圳等,如您想挣点外块,积累资源,充实生活,请联系我。
要求:
相关技术专业,本科及以上学历;
三年以上实际项目经验;
认真,热情,耐心,乐于助人,不保守,表达能力较好。具体再议。
感兴趣的可以联系:QQ 2355811930 ;QQ1489302364,微信15501239699,简历接收邮箱:admin@info-soft.cn
收起阅读 »
nini 发表于 : 2017-06-29 17:16
评论 (1)
智慧芽诚聘高级搜索工程师20-30K(C轮互联网Saas)
职位描述【工作职责】:
1、负责搜索系统分布式架构设计、搭建、维护和优化;
2、负责分词,索引和查询的算法优化,提高查全率和搜索性能;
3、负责搜索服务端的开发工作,融合大数据平台实现个性化搜索,完成各种垂直搜索应用的开发;
4、负责内容的数据挖掘,分析与挖掘各种潜在关联,分析特征,建议模型,优化现有的排序结果;
5、搜索服务的线上部署和维护,监控搜索服务的运行状态;
【岗位要求】:
1. 熟悉搜索引擎原理和机制,熟练撑握搜索引擎技术,有丰富的搜索引擎相关的研发经验,对算法设计、数据结构有深刻的理解;
2. 熟悉Solr、Elasticsearch等开源搜索技术及mysql、redis等数据库,能够胜任搜索引擎应用技术的研究与开发、设计与架构能力;
3. 熟悉LINUX操作命令及Python、SHELL脚本编写;
4、对数据敏感,具备优秀的逻辑思维,对解决挑战性问题充满热情,善于独立解决问题和分析问题;
5. 在用户行为挖掘上有相关研究和专业积累;有较好的创新能力;
6. 良好的团队合作精神,较强的沟通能力;
7. 实践过自然语言处理、数据挖掘、机器学习者优先;
8. 有信息提取和大型搜索索引建立、排序算法、query优化经验者优先;
有意者请发简历至 yuezhitao@patsnap.com
【加入我们,你可以得到什么?】
你可以得到国际化的视野,可以和国外的同事和客户进行交流沟通
你可以跟随公司快速成长,从“前台”到“总裁”的华丽变身不再是梦想
你可以学习和应用最新最酷的技术,我们鼓励学习创新,而不是重复使用过时效率差的技术
你不需要定时打卡,不用担心迟到扣钱,因为我们是弹性工作制
你不需要担心五险一金,因为我们完全按照规定缴纳,员工还可以享受年假、病假、婚假、丧假、产假等带薪休假,另外我们还有补充商业保险
【为什么选择我们?】
1. 公司前景:整个大环境对知识产权的重视,除了现有业务增长迅猛,还在新兴业务上积极布局
2. 办公地点:坐落于上海静安区黄金地段,CBD中的CBD
3. 交通方便:地铁五线环绕(1,3,4,12,13),步行10分钟之内可到,数十多路公交车近在咫尺
4. 工作环境:开放,明亮。无限量供应的饮料和零食,可以让你迅速成为胖纸! Mac Pro, Surface Pro, 大屏显示器各种标配。
【我们是谁?】
或许现在你对专利市场还感到陌生,或许你还并不了解知识产权的重要性,但互联网时代,“IP”这个热词你一定有所听说,且耳熟能详。看看身边高精尖的技术产品,被百姓津津乐道的新能源汽车,到酷炫的无人驾驶,还有风靡持久的日本电饭煲……无不持续着、保护着、更迭着他们的IP技术。
崛起的IP界应证着这样一句话:
21世纪一定是知识经济的时代,科技创新更是知识经济时代的灵魂——
而PatSnap智慧芽,正立旨于为科技创新指路。
PatSnap是全球领先的专利分析与管理平台,公司致力于让全球更多组织机构了解并使用专利。PatSnap通过提供强大又易用的专利工具,帮助客户从专利中获取有价值的资讯,从而促进客户的商业化过程,加速研发进度,确定重要技术发展方向,最终提高客户在行业内的核心竞争力。
PatSnap通过位于新加坡,中国苏州,英国伦敦的三家分公司,业务辐射全球上千家企业,客户中不乏 IBM ,美国国立卫生研究院,美国国防部,MIT(麻省理工学院)以及新加坡国立大学等知名企业及团体。
目前我们已经获得C轮融资,在近期的在德勤亚太区高科技高成长500强企业中获得第44位的优质排名。德勤高科技高成长500强是亚太区内享负盛名的高科技企业评选活动。本次评选基于过去三年企业的收入增长百分比而定,智慧芽在这段时期内增长了1078%!
有意者请发简历至 yuezhitao@patsnap.com
继续阅读 »
1、负责搜索系统分布式架构设计、搭建、维护和优化;
2、负责分词,索引和查询的算法优化,提高查全率和搜索性能;
3、负责搜索服务端的开发工作,融合大数据平台实现个性化搜索,完成各种垂直搜索应用的开发;
4、负责内容的数据挖掘,分析与挖掘各种潜在关联,分析特征,建议模型,优化现有的排序结果;
5、搜索服务的线上部署和维护,监控搜索服务的运行状态;
【岗位要求】:
1. 熟悉搜索引擎原理和机制,熟练撑握搜索引擎技术,有丰富的搜索引擎相关的研发经验,对算法设计、数据结构有深刻的理解;
2. 熟悉Solr、Elasticsearch等开源搜索技术及mysql、redis等数据库,能够胜任搜索引擎应用技术的研究与开发、设计与架构能力;
3. 熟悉LINUX操作命令及Python、SHELL脚本编写;
4、对数据敏感,具备优秀的逻辑思维,对解决挑战性问题充满热情,善于独立解决问题和分析问题;
5. 在用户行为挖掘上有相关研究和专业积累;有较好的创新能力;
6. 良好的团队合作精神,较强的沟通能力;
7. 实践过自然语言处理、数据挖掘、机器学习者优先;
8. 有信息提取和大型搜索索引建立、排序算法、query优化经验者优先;
有意者请发简历至 yuezhitao@patsnap.com
【加入我们,你可以得到什么?】
你可以得到国际化的视野,可以和国外的同事和客户进行交流沟通
你可以跟随公司快速成长,从“前台”到“总裁”的华丽变身不再是梦想
你可以学习和应用最新最酷的技术,我们鼓励学习创新,而不是重复使用过时效率差的技术
你不需要定时打卡,不用担心迟到扣钱,因为我们是弹性工作制
你不需要担心五险一金,因为我们完全按照规定缴纳,员工还可以享受年假、病假、婚假、丧假、产假等带薪休假,另外我们还有补充商业保险
【为什么选择我们?】
1. 公司前景:整个大环境对知识产权的重视,除了现有业务增长迅猛,还在新兴业务上积极布局
2. 办公地点:坐落于上海静安区黄金地段,CBD中的CBD
3. 交通方便:地铁五线环绕(1,3,4,12,13),步行10分钟之内可到,数十多路公交车近在咫尺
4. 工作环境:开放,明亮。无限量供应的饮料和零食,可以让你迅速成为胖纸! Mac Pro, Surface Pro, 大屏显示器各种标配。
【我们是谁?】
或许现在你对专利市场还感到陌生,或许你还并不了解知识产权的重要性,但互联网时代,“IP”这个热词你一定有所听说,且耳熟能详。看看身边高精尖的技术产品,被百姓津津乐道的新能源汽车,到酷炫的无人驾驶,还有风靡持久的日本电饭煲……无不持续着、保护着、更迭着他们的IP技术。
崛起的IP界应证着这样一句话:
21世纪一定是知识经济的时代,科技创新更是知识经济时代的灵魂——
而PatSnap智慧芽,正立旨于为科技创新指路。
PatSnap是全球领先的专利分析与管理平台,公司致力于让全球更多组织机构了解并使用专利。PatSnap通过提供强大又易用的专利工具,帮助客户从专利中获取有价值的资讯,从而促进客户的商业化过程,加速研发进度,确定重要技术发展方向,最终提高客户在行业内的核心竞争力。
PatSnap通过位于新加坡,中国苏州,英国伦敦的三家分公司,业务辐射全球上千家企业,客户中不乏 IBM ,美国国立卫生研究院,美国国防部,MIT(麻省理工学院)以及新加坡国立大学等知名企业及团体。
目前我们已经获得C轮融资,在近期的在德勤亚太区高科技高成长500强企业中获得第44位的优质排名。德勤高科技高成长500强是亚太区内享负盛名的高科技企业评选活动。本次评选基于过去三年企业的收入增长百分比而定,智慧芽在这段时期内增长了1078%!
有意者请发简历至 yuezhitao@patsnap.com
职位描述【工作职责】:
1、负责搜索系统分布式架构设计、搭建、维护和优化;
2、负责分词,索引和查询的算法优化,提高查全率和搜索性能;
3、负责搜索服务端的开发工作,融合大数据平台实现个性化搜索,完成各种垂直搜索应用的开发;
4、负责内容的数据挖掘,分析与挖掘各种潜在关联,分析特征,建议模型,优化现有的排序结果;
5、搜索服务的线上部署和维护,监控搜索服务的运行状态;
【岗位要求】:
1. 熟悉搜索引擎原理和机制,熟练撑握搜索引擎技术,有丰富的搜索引擎相关的研发经验,对算法设计、数据结构有深刻的理解;
2. 熟悉Solr、Elasticsearch等开源搜索技术及mysql、redis等数据库,能够胜任搜索引擎应用技术的研究与开发、设计与架构能力;
3. 熟悉LINUX操作命令及Python、SHELL脚本编写;
4、对数据敏感,具备优秀的逻辑思维,对解决挑战性问题充满热情,善于独立解决问题和分析问题;
5. 在用户行为挖掘上有相关研究和专业积累;有较好的创新能力;
6. 良好的团队合作精神,较强的沟通能力;
7. 实践过自然语言处理、数据挖掘、机器学习者优先;
8. 有信息提取和大型搜索索引建立、排序算法、query优化经验者优先;
有意者请发简历至 yuezhitao@patsnap.com
【加入我们,你可以得到什么?】
你可以得到国际化的视野,可以和国外的同事和客户进行交流沟通
你可以跟随公司快速成长,从“前台”到“总裁”的华丽变身不再是梦想
你可以学习和应用最新最酷的技术,我们鼓励学习创新,而不是重复使用过时效率差的技术
你不需要定时打卡,不用担心迟到扣钱,因为我们是弹性工作制
你不需要担心五险一金,因为我们完全按照规定缴纳,员工还可以享受年假、病假、婚假、丧假、产假等带薪休假,另外我们还有补充商业保险
【为什么选择我们?】
1. 公司前景:整个大环境对知识产权的重视,除了现有业务增长迅猛,还在新兴业务上积极布局
2. 办公地点:坐落于上海静安区黄金地段,CBD中的CBD
3. 交通方便:地铁五线环绕(1,3,4,12,13),步行10分钟之内可到,数十多路公交车近在咫尺
4. 工作环境:开放,明亮。无限量供应的饮料和零食,可以让你迅速成为胖纸! Mac Pro, Surface Pro, 大屏显示器各种标配。
【我们是谁?】
或许现在你对专利市场还感到陌生,或许你还并不了解知识产权的重要性,但互联网时代,“IP”这个热词你一定有所听说,且耳熟能详。看看身边高精尖的技术产品,被百姓津津乐道的新能源汽车,到酷炫的无人驾驶,还有风靡持久的日本电饭煲……无不持续着、保护着、更迭着他们的IP技术。
崛起的IP界应证着这样一句话:
21世纪一定是知识经济的时代,科技创新更是知识经济时代的灵魂——
而PatSnap智慧芽,正立旨于为科技创新指路。
PatSnap是全球领先的专利分析与管理平台,公司致力于让全球更多组织机构了解并使用专利。PatSnap通过提供强大又易用的专利工具,帮助客户从专利中获取有价值的资讯,从而促进客户的商业化过程,加速研发进度,确定重要技术发展方向,最终提高客户在行业内的核心竞争力。
PatSnap通过位于新加坡,中国苏州,英国伦敦的三家分公司,业务辐射全球上千家企业,客户中不乏 IBM ,美国国立卫生研究院,美国国防部,MIT(麻省理工学院)以及新加坡国立大学等知名企业及团体。
目前我们已经获得C轮融资,在近期的在德勤亚太区高科技高成长500强企业中获得第44位的优质排名。德勤高科技高成长500强是亚太区内享负盛名的高科技企业评选活动。本次评选基于过去三年企业的收入增长百分比而定,智慧芽在这段时期内增长了1078%!
有意者请发简历至 yuezhitao@patsnap.com 收起阅读 »
1、负责搜索系统分布式架构设计、搭建、维护和优化;
2、负责分词,索引和查询的算法优化,提高查全率和搜索性能;
3、负责搜索服务端的开发工作,融合大数据平台实现个性化搜索,完成各种垂直搜索应用的开发;
4、负责内容的数据挖掘,分析与挖掘各种潜在关联,分析特征,建议模型,优化现有的排序结果;
5、搜索服务的线上部署和维护,监控搜索服务的运行状态;
【岗位要求】:
1. 熟悉搜索引擎原理和机制,熟练撑握搜索引擎技术,有丰富的搜索引擎相关的研发经验,对算法设计、数据结构有深刻的理解;
2. 熟悉Solr、Elasticsearch等开源搜索技术及mysql、redis等数据库,能够胜任搜索引擎应用技术的研究与开发、设计与架构能力;
3. 熟悉LINUX操作命令及Python、SHELL脚本编写;
4、对数据敏感,具备优秀的逻辑思维,对解决挑战性问题充满热情,善于独立解决问题和分析问题;
5. 在用户行为挖掘上有相关研究和专业积累;有较好的创新能力;
6. 良好的团队合作精神,较强的沟通能力;
7. 实践过自然语言处理、数据挖掘、机器学习者优先;
8. 有信息提取和大型搜索索引建立、排序算法、query优化经验者优先;
有意者请发简历至 yuezhitao@patsnap.com
【加入我们,你可以得到什么?】
你可以得到国际化的视野,可以和国外的同事和客户进行交流沟通
你可以跟随公司快速成长,从“前台”到“总裁”的华丽变身不再是梦想
你可以学习和应用最新最酷的技术,我们鼓励学习创新,而不是重复使用过时效率差的技术
你不需要定时打卡,不用担心迟到扣钱,因为我们是弹性工作制
你不需要担心五险一金,因为我们完全按照规定缴纳,员工还可以享受年假、病假、婚假、丧假、产假等带薪休假,另外我们还有补充商业保险
【为什么选择我们?】
1. 公司前景:整个大环境对知识产权的重视,除了现有业务增长迅猛,还在新兴业务上积极布局
2. 办公地点:坐落于上海静安区黄金地段,CBD中的CBD
3. 交通方便:地铁五线环绕(1,3,4,12,13),步行10分钟之内可到,数十多路公交车近在咫尺
4. 工作环境:开放,明亮。无限量供应的饮料和零食,可以让你迅速成为胖纸! Mac Pro, Surface Pro, 大屏显示器各种标配。
【我们是谁?】
或许现在你对专利市场还感到陌生,或许你还并不了解知识产权的重要性,但互联网时代,“IP”这个热词你一定有所听说,且耳熟能详。看看身边高精尖的技术产品,被百姓津津乐道的新能源汽车,到酷炫的无人驾驶,还有风靡持久的日本电饭煲……无不持续着、保护着、更迭着他们的IP技术。
崛起的IP界应证着这样一句话:
21世纪一定是知识经济的时代,科技创新更是知识经济时代的灵魂——
而PatSnap智慧芽,正立旨于为科技创新指路。
PatSnap是全球领先的专利分析与管理平台,公司致力于让全球更多组织机构了解并使用专利。PatSnap通过提供强大又易用的专利工具,帮助客户从专利中获取有价值的资讯,从而促进客户的商业化过程,加速研发进度,确定重要技术发展方向,最终提高客户在行业内的核心竞争力。
PatSnap通过位于新加坡,中国苏州,英国伦敦的三家分公司,业务辐射全球上千家企业,客户中不乏 IBM ,美国国立卫生研究院,美国国防部,MIT(麻省理工学院)以及新加坡国立大学等知名企业及团体。
目前我们已经获得C轮融资,在近期的在德勤亚太区高科技高成长500强企业中获得第44位的优质排名。德勤高科技高成长500强是亚太区内享负盛名的高科技企业评选活动。本次评选基于过去三年企业的收入增长百分比而定,智慧芽在这段时期内增长了1078%!
有意者请发简历至 yuezhitao@patsnap.com 收起阅读 »
关于Elasticsearch性能优化的几点问题
本次分享主要包含两个方面的实战经验:索引性能和查询性能。
一. 索引性能(Index Performance)
首先要考虑的是,索引性能是否有必要做优化?
索引速度提高与否?主要是看瓶颈在什么地方,若是 Read DB(产生DOC)的速度比较慢,那瓶颈不在 ElasticSearch 时,优化就没那么大的动力。实际上 Elasticsearch 的索引速度还是非常快的。
我们有一次遇到 Elasticsearch 升级后索引速度很慢,查下来是新版 IK 分词的问题,修改分词插件后得到解决。
如果需要优化,应该如何优化?
SSD 是经济压力能承受情况下的不二选择。减少碎片也可以提高索引速度,每天进行优化还是很有必要的。在初次索引的时候,把 replica 设置为 0,也能提高索引速度。
bulk 是不是一定需要呢?
若是 Elasticsearch 普通索引已经导致高企的 LA,IO 压力已经见顶,这时候 bulk 也无法提供帮助,SSD 应该是很好的选择。
在 create doc 速度能跟上的时候,bulk 是可以提高速度的。
记得 threadpool.index.queue_size ++,不然会出现索引时队列不够用的情况。
indices.memory.index_buffer_size:10% 这个参数可以进行适当调整。
调整如下参数也可以提高索引速度:index.translog.flush_threshold_ops:50000 和 refresh_interval。
二. 查询性能(Query Perofrmance)
王道是什么?routing,routing,还是 routing。
我们为了提高查询速度,减少慢查询,结合自己的业务实践,使用多个集群,每个集群使用不同的 routing。比如,用户是一个routing维度。
在实践中,这个routing 非常重要。
我们碰到一种情况,想把此维度的查询(即用户查询)引到非用户routing 的集群,结果集群完全顶不住!
在大型的本地分类网站中,城市、类目也是一个不错的维度。我们使用这种维度进行各种搭配。然后在前端分析查询,把各个不同查询分别引入合适的集群。这样做以后,每个集群只需要很少的机器,而且保持很小的 CPU Usage 和 LA。从而查询速度够快,慢查询几乎消灭。
分合?
分别(索引和routing)查询和合并(索引和routing)查询,即此分合的意思。
索引越来越大,单个 shard 也很巨大,查询速度也越来越慢。这时候,是选择分索引还是更多的shards?
在实践过程中,更多的 shards 会带来额外的索引压力,即 IO 压力。
我们选择了分索引。比如按照每个大分类一个索引,或者主要的大城市一个索引。然后将他们进行合并查询。如:http://cluster1:9200/shanghai,beijing/_search?routing=fang,自动将查询中城市属性且值为上海或北京的查询,且是房类目的,引入集群 cluster1,并且routing等于fang。
http://cluster1:9200/other/_search?routing=jinan,linyi。小城市的索引,我们使用城市做 routing,如本例中同时查询济南和临沂城市。
http://cluster1:9200/_all/_search,全部城市查询。
再如: http://cluster2:9200/fang,che/_search?routing=shanghai_qiche,shanghai_zufang,beijing_qiche,beijing_zufang。查询上海和北京在小分类汽车、整租的信息,那我们进行如上合并查询。并将其引入集群 cluster2。
使用更多的 shards?
除了有 IO 压力,而且不能进行全部城市或全部类目查询,因为完全顶不住。
Elastic 官方文档建议:一个 Node 最好不要多于三个 shards。
若是 "more shards”,除了增加更多的机器,是没办法做到这一点的。
分索引,虽然一个 Node 总的shards 还是挺多的,但是一个索引可以保持3个以内的shards。
我们使用分索引时,全量查询是可以顶住的,虽然压力有点儿高。
索引越来越大,资源使用也越来越多。若是要进行更细的集群分配,大索引使用的资源成倍增加。
有什么办法能减小索引?显然,创建 doc 时,把不需要的 field 去掉是一个办法;但是,这需要对业务非常熟悉。
有啥立竿见影的办法?
根据我们信息的特点,内容(field:description)占了索引的一大半,那我们就不把 description 索引进 ES,doc 小了一倍,集群也小了一倍,所用的资源(Memory, HD or SSD, Host, snapshot存储,还有时间)大大节省,查询速度自然也更快。
那要查 description 怎么办?
上面的实例中,我们可以把查询引入不同集群,自然我们也可以把 description 查询引入一个非实时(也可以实时)集群,这主要是我们业务特点决定的,因为description查询所占比例非常小,使得我们可以这样做。
被哪些查询搞过?第一位是 Range 查询,这货的性能真不敢恭维。在最热的查询中,若是有这货,肯定是非常痛苦的,网页变慢,查询速度变慢,集群 LA 高企,严重的时候会导致集群 shard 自动下线。所以,建议在最热的查询中避免使用 Range 查询。
Facet 查询,在后续版本这个被 aggregations 替代,我们大多数时候让它在后端进行运算。
三. 其他
1)线程池
线程池我们默认使用 fixed,使用 cached 有可能控制不好。主要是比较大的分片 relocation时,会导致分片自动下线,集群可能处于危险状态。在集群高压时,若是 cached ,分片也可能自动下线。自 1.4 版本后,我们就一直 fixed,至于新版是否还存在这个问题,就没再试验了。
两个原因:一是 routing王道带来的改善,使得集群一直低压运行;二是使用fixed 后,已经极少遇到自动下线shard了。
我们前面说过,user 是一个非常好的维度。这个维度很重要,routing 效果非常明显。其他维度,需要根据业务特点,进行组合。
所以我们的集群一直是低压运行,就很少再去关注新版本的 使用 cached 配置问题。
hreadpool.search.queue_size 这个配置是很重要的,一般默认是够用了,可以尝试提高。
2)优化
每天优化是有好处的,可以大大改善查询性能。max_num_segments 建议配置为1。虽然优化时间会变长,但是在高峰期前能完成的话,会对查询性能有很大好处。
3) JVM GC的选择:选择 G1还是 CMS?
应该大多数人还是选择了 CMS,我们使用的经验是 G1 和 CMS 比较接近;但和 CMS 相比,还是有一点距离,至少在我们使用经验中是如此。
JVM 32G 现象?
128G内存的机器配置一个 JVM,然后是巨大的 heapsize (如64G)?
还是配多个 JVM instance,较小的 heapsize(如32G)?
我的建议是后者。实际使用中,后者也能帮助我们节省不少资源,并提供不错的性能。具体请参阅 “Don’t Cross 32 GB!" (https://www.elastic.co/guide/e ... _oops)
跨 32G 时,有一个现象,使用更多的内存,比如 40G,效果还不如31G!
这篇文档值得大家仔细阅读。
JVM 还有一个配置 bootstrap.mlockall: true,比较重要。这是让 JVM 启动的时候就 锁定 heap 内存。
有没有用过 较小的 heapsize,加上SSD?我听说有人使用过,效果还不错,当然,我们自己还没试过。
4)插件工具
推荐 kopf,是一个挺不错的工具,更新及时,功能完备,可以让你忘掉很多 API :)。
上面是 kopf 的图片。管理Elasticsearch 集群真心方便。以前那些 API ,慢慢要忘光了:)
索引,查询,和一些重要的配置,是今天分享的重点。
Q&A
Q1:您建议生产环境JVM采用什么样的参数设置?FULL GC频率和时间如何?
CMS 标准配置。
ES_HEAP_NEWSIZE=?G
JAVA_OPTS="$JAVA_OPTS -XX:+UseCondCardMark"
JAVA_OPTS="$JAVA_OPTS -XX:CMSWaitDuration=250"
JAVA_OPTS="$JAVA_OPTS -XX:+UseParNewGC"
JAVA_OPTS="$JAVA_OPTS -XX:+UseConcMarkSweepGC"
JAVA_OPTS="$JAVA_OPTS -XX:CMSInitiatingOccupancyFraction=75"
JAVA_OPTS="$JAVA_OPTS -XX:+UseCMSInitiatingOccupancyOnly"
Full GC 很少去care 它了。我们使用 Elasticsearch 在JVM上花的时间很少。
Q2:生产环境服务器如何配置性价比较高?单机CPU核数、主频?内存容量?磁盘容量?
内存大一些,CPU 多核是必要的,JVM 和 Elasticsearch 会充分使用内存和多核的。 关于内存容量的问题,很多是 JVM Tunning 的问题。 磁盘容量没啥要求。
Q3: 分组统计(Facet 查询或 aggregations )大多数时候让它在后端进行运算,怎么实现?应用如果需要实时进行统计而且并发量较大,如何优化?
因为我们是网站系统,所以对于 Facet 请求,引导到后端慢慢计算,前端初始的时候可能没数据,但是此后就会有了。
如果是精确要求的话,那就只能从 提高 facet 查询性能去下手,比如 routing、filter、cache、更多的内存...
Q4:存进Elasticsearch的数据,timestamp是UTC时间,Elasticsearch集群会在UTC 0点,也就是北京时间早上8点自动执行优化?如何改参数设置这个时间?
我们没有使用Elasticsearch的自动优化设置。自己控制优化时间。
Q5:我的Java程序,log4j2 Flume appender,然后机器上的Flume agent ,直接Elasticsearch 的sink avro到 es节点上,多少个agent 连在单个Elasticsearch节点比较合适 ?
ElasticSearch本身是一个分布式计算集群,所以,请求平均分配到每个 node 即可。
Q6:我代码里直接用 Java API 生成Flume appender 格式,Flume agent 里interceptor去拆分几个字段,这样是不是太累了?比较推荐的做法是不是还是各业务点自己控制字段,调用Elasticsearch API 生成索引内容?
业务点自己控制生成的文档吧?如果需要产生不同routing,并且分了索引,这些其实是业务相关的。routing和不同索引,都是根据业务情况哪些查询比较集中而进行处理的。
Q7:您见过或管理过的生产环境的Elasticsearch数据量多大?
我们使用 Elasticsearch 进行某些业务处理,数据量过亿。
Q8:SSD性能提升多少?
SSD 对索引帮助非常大,效果当当的,提高几十倍应该是没问题。不过,我们没有试过完全使用SSD顶查询,而是使用内存,内存性价比还是不错的。
Q9:我们现在有256个shard,用uid做routing,所有查询都是走routing。每个shard有30多G,每次扩容很慢,有什么建议?
可以考虑使用分合查询吗? 或者使用更多的维度? 256个 shard 确实比较难以控制。但是如果是分索引和查询,比more shards(256) 效果应该会好不少。
Q10:Elasticsearch排序等聚合类的操作需要用到fielddata,查询时很慢。新版本中doc values聚合查询操作性能提升很大,你们有没有用过?
Facet 查询需要更大的内存,更多的 CPU 资源。可以考虑routing、filter、cache等多种方式提高性能。
Aggs 将来是要替换 Facet,建议尽快替换原来的facet API。
Q11:Elasticsearch配置bootstrap.mlockall,我们在使用中发现会导致启动很慢,因为Elasticsearch要获取到足够的内存才开始启动。
启动慢是可以接受的,启动慢的原因也许是内存没有有效释放过,比如文件 cached了。 内存充足的情况下,启动速度还是蛮快的,可以接受。 JVM 和 Lucene 都需要内存,一般是JVM 50%, 剩下的50% 文件cached 为Lucene 使用。
Q12:优化是一个开销比较大的操作,每天优化的时候是否会导致查询不可用?如何优化这块?
优化是开销很大的。不会导致查询不可用。优化是值得的,大量的碎片会导致查询性能大大降低。 如果非常 care 查询,可以考虑多个集群。在优化时,查询 skip 这个集群就可以。
Q13:Elasticsearch适合做到10亿级数据查询,每天千万级的数据实时写入或更新吗?
10亿是可以做到的,如果文档轻量,10亿所占的资源还不是很多。
ELK 使用 Elasticsearch ,进行日志处理每天千万是小case吧?
不过我们除了使用 ELK 进行日志处理,还进行业务处理,10亿级快速查询是可以做到,不过,需要做一些工作,比如索引和shards的分分合合:)
Q14:Elasticsearch相比Solr有什么优势吗?
我们当年使用 Solr 的时候,Elasticsearch 刚出来。他们都是基于 Lucene的。 Elasticsearch 相对于 solr ,省事是一个优点。而且现在 Elasticsearch 相关的应用软件也越来越多。Solr 和 Lucene 集成度很高,更新版本是和Lucene一起的,这是个优点。
很多年没用 Solr了,毕竟那时候数据量还不大,所以折腾的就少了,主要还是折腾 JVM。所以,就不再过多的比较了。
Q15:分词用的什么组件?Elasticsearch自带的吗?
我们使用 IK 分词,不过其他分词也不错。IK分词更新还是很及时的。而且它可以远程更新词典。:)
Q16: reindex有没有好的方法?
reindex 这个和 Lucene 有关,它的 update 就是 delete+ add。
Q17:以上面的两个例子为例 : 是存储多份同样的数据么?
是两个集群。第一个集群使用大城市分索引,不过,还有大部分小城市合并一个索引。大城市还是用类目进行routing,小城市合并的索引就使用城市进行routing 。
第二个集群,大类分得索引,比如fang、che,房屋和车辆和其他类目在一个集群上,他们使用 city+二级类目做routing。
Q18:集群部署有没有使用 Docker ? 我们使用的时候 ,同一个服务器 节点之间的互相发现没有问题 ,但是跨机器的时候需要强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群互相发现问题。
我们使用puppet进行部署。暂没使用 Docker。 强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群,跨IP段的时候是有这个需要。
Q19:您建议采用什么样的数据总线架构来保证业务数据按routing写入多个Elasticsearch集群,怎么保证多集群Elasticsearch中的数据与数据库中数据的一致性?
我们以前使用 php在web代码中进行索引和分析 query,然后引导到不同集群。 现在我们开发了一套go rest系统——4sea,使用 redis + elastic 以综合提高性能。
索引时,更新db的同时,提交一个文档 ID 通知4sea 进行更新,然后根据配置更新到不同集群。
数据提交到查询时,就是分析 query 并引导到不同集群。
这套 4sea 系统,有机会的可以考虑开源,不算很复杂的。
Q20: 能介绍一下Elasticsearch的集群rebanlance、段合并相关的原理和经验吗?
“段”合并?,我们是根据业务特点,产生几个不一样的集群,主要还是 routing 不一样。
shards 比较平均很重要的,所以选择routing 维度是难点,选择城市的话,大城市所在分片会非常大,此时可以考虑 分索引,几个大城市几个索引,然后小城市合并一个索引。
如果 shards 大小分布平均的话,就不关心如何 allocation 了。
Q21:关于集群rebalance,其实就是cluster.routing.allocation配置下的那些rebalance相关的设置,比如allow_rebalance/cluster_concurrent_rebalance/node_initial_primaries_recoveries,推荐怎么配置?
分片多的情况下,这个才是需要的吧。
分片比较少时,allow_rebalance disable,然后手动也可以接受的。
分片多,一般情况会自动平衡。我们对主从不太关心。只是如果一台机器多个 JVM instance (多个 Elasticsearch node)的话,我们写了个脚本来避免同一shard 在一台机器上。
cluster_concurrent_rebalance 在恢复的时候根据情况修改。正常情况下,再改成默认就好了。
node_initial_primaries_recoveries,在保证集群低压的情况下,不怎么care。
kopf 上面有好多这种配置,你可以多试试。
Q22:合并查询是异步请求还是同步请求?做缓存吗?
合并查询是 Elasticsearch 自带 API。
Q23:用http url connection请求的时候,会发现返回请求很耗时,一般怎么处理?
尽可能减少慢查询吧?我们很多工作就是想办法如何减少慢查询,routing和分分合合,就是这个目的。
Q24:生产环境单个节点存储多少G数据?
有大的,有小的。小的也几十G了。不过根据我们自己的业务特点,某些集群就去掉了全文索引。唯一的全文索引,使用基本的routing(比较平衡的routing,比如user。城市的话,就做不到平衡了,因为大城市数据很多),然后做了 快照,反正是增量快照,1小时甚至更短时间都可以考虑!!!去掉全文索引的其他业务集群,就小多了。
继续阅读 »
一. 索引性能(Index Performance)
首先要考虑的是,索引性能是否有必要做优化?
索引速度提高与否?主要是看瓶颈在什么地方,若是 Read DB(产生DOC)的速度比较慢,那瓶颈不在 ElasticSearch 时,优化就没那么大的动力。实际上 Elasticsearch 的索引速度还是非常快的。
我们有一次遇到 Elasticsearch 升级后索引速度很慢,查下来是新版 IK 分词的问题,修改分词插件后得到解决。
如果需要优化,应该如何优化?
SSD 是经济压力能承受情况下的不二选择。减少碎片也可以提高索引速度,每天进行优化还是很有必要的。在初次索引的时候,把 replica 设置为 0,也能提高索引速度。
bulk 是不是一定需要呢?
若是 Elasticsearch 普通索引已经导致高企的 LA,IO 压力已经见顶,这时候 bulk 也无法提供帮助,SSD 应该是很好的选择。
在 create doc 速度能跟上的时候,bulk 是可以提高速度的。
记得 threadpool.index.queue_size ++,不然会出现索引时队列不够用的情况。
indices.memory.index_buffer_size:10% 这个参数可以进行适当调整。
调整如下参数也可以提高索引速度:index.translog.flush_threshold_ops:50000 和 refresh_interval。
二. 查询性能(Query Perofrmance)
王道是什么?routing,routing,还是 routing。
我们为了提高查询速度,减少慢查询,结合自己的业务实践,使用多个集群,每个集群使用不同的 routing。比如,用户是一个routing维度。
在实践中,这个routing 非常重要。
我们碰到一种情况,想把此维度的查询(即用户查询)引到非用户routing 的集群,结果集群完全顶不住!
在大型的本地分类网站中,城市、类目也是一个不错的维度。我们使用这种维度进行各种搭配。然后在前端分析查询,把各个不同查询分别引入合适的集群。这样做以后,每个集群只需要很少的机器,而且保持很小的 CPU Usage 和 LA。从而查询速度够快,慢查询几乎消灭。
分合?
分别(索引和routing)查询和合并(索引和routing)查询,即此分合的意思。
索引越来越大,单个 shard 也很巨大,查询速度也越来越慢。这时候,是选择分索引还是更多的shards?
在实践过程中,更多的 shards 会带来额外的索引压力,即 IO 压力。
我们选择了分索引。比如按照每个大分类一个索引,或者主要的大城市一个索引。然后将他们进行合并查询。如:http://cluster1:9200/shanghai,beijing/_search?routing=fang,自动将查询中城市属性且值为上海或北京的查询,且是房类目的,引入集群 cluster1,并且routing等于fang。
http://cluster1:9200/other/_search?routing=jinan,linyi。小城市的索引,我们使用城市做 routing,如本例中同时查询济南和临沂城市。
http://cluster1:9200/_all/_search,全部城市查询。
再如: http://cluster2:9200/fang,che/_search?routing=shanghai_qiche,shanghai_zufang,beijing_qiche,beijing_zufang。查询上海和北京在小分类汽车、整租的信息,那我们进行如上合并查询。并将其引入集群 cluster2。
使用更多的 shards?
除了有 IO 压力,而且不能进行全部城市或全部类目查询,因为完全顶不住。
Elastic 官方文档建议:一个 Node 最好不要多于三个 shards。
若是 "more shards”,除了增加更多的机器,是没办法做到这一点的。
分索引,虽然一个 Node 总的shards 还是挺多的,但是一个索引可以保持3个以内的shards。
我们使用分索引时,全量查询是可以顶住的,虽然压力有点儿高。
索引越来越大,资源使用也越来越多。若是要进行更细的集群分配,大索引使用的资源成倍增加。
有什么办法能减小索引?显然,创建 doc 时,把不需要的 field 去掉是一个办法;但是,这需要对业务非常熟悉。
有啥立竿见影的办法?
根据我们信息的特点,内容(field:description)占了索引的一大半,那我们就不把 description 索引进 ES,doc 小了一倍,集群也小了一倍,所用的资源(Memory, HD or SSD, Host, snapshot存储,还有时间)大大节省,查询速度自然也更快。
那要查 description 怎么办?
上面的实例中,我们可以把查询引入不同集群,自然我们也可以把 description 查询引入一个非实时(也可以实时)集群,这主要是我们业务特点决定的,因为description查询所占比例非常小,使得我们可以这样做。
被哪些查询搞过?第一位是 Range 查询,这货的性能真不敢恭维。在最热的查询中,若是有这货,肯定是非常痛苦的,网页变慢,查询速度变慢,集群 LA 高企,严重的时候会导致集群 shard 自动下线。所以,建议在最热的查询中避免使用 Range 查询。
Facet 查询,在后续版本这个被 aggregations 替代,我们大多数时候让它在后端进行运算。
三. 其他
1)线程池
线程池我们默认使用 fixed,使用 cached 有可能控制不好。主要是比较大的分片 relocation时,会导致分片自动下线,集群可能处于危险状态。在集群高压时,若是 cached ,分片也可能自动下线。自 1.4 版本后,我们就一直 fixed,至于新版是否还存在这个问题,就没再试验了。
两个原因:一是 routing王道带来的改善,使得集群一直低压运行;二是使用fixed 后,已经极少遇到自动下线shard了。
我们前面说过,user 是一个非常好的维度。这个维度很重要,routing 效果非常明显。其他维度,需要根据业务特点,进行组合。
所以我们的集群一直是低压运行,就很少再去关注新版本的 使用 cached 配置问题。
hreadpool.search.queue_size 这个配置是很重要的,一般默认是够用了,可以尝试提高。
2)优化
每天优化是有好处的,可以大大改善查询性能。max_num_segments 建议配置为1。虽然优化时间会变长,但是在高峰期前能完成的话,会对查询性能有很大好处。
3) JVM GC的选择:选择 G1还是 CMS?
应该大多数人还是选择了 CMS,我们使用的经验是 G1 和 CMS 比较接近;但和 CMS 相比,还是有一点距离,至少在我们使用经验中是如此。
JVM 32G 现象?
128G内存的机器配置一个 JVM,然后是巨大的 heapsize (如64G)?
还是配多个 JVM instance,较小的 heapsize(如32G)?
我的建议是后者。实际使用中,后者也能帮助我们节省不少资源,并提供不错的性能。具体请参阅 “Don’t Cross 32 GB!" (https://www.elastic.co/guide/e ... _oops)
跨 32G 时,有一个现象,使用更多的内存,比如 40G,效果还不如31G!
这篇文档值得大家仔细阅读。
JVM 还有一个配置 bootstrap.mlockall: true,比较重要。这是让 JVM 启动的时候就 锁定 heap 内存。
有没有用过 较小的 heapsize,加上SSD?我听说有人使用过,效果还不错,当然,我们自己还没试过。
4)插件工具
推荐 kopf,是一个挺不错的工具,更新及时,功能完备,可以让你忘掉很多 API :)。
上面是 kopf 的图片。管理Elasticsearch 集群真心方便。以前那些 API ,慢慢要忘光了:)
索引,查询,和一些重要的配置,是今天分享的重点。
Q&A
Q1:您建议生产环境JVM采用什么样的参数设置?FULL GC频率和时间如何?
CMS 标准配置。
ES_HEAP_NEWSIZE=?G
JAVA_OPTS="$JAVA_OPTS -XX:+UseCondCardMark"
JAVA_OPTS="$JAVA_OPTS -XX:CMSWaitDuration=250"
JAVA_OPTS="$JAVA_OPTS -XX:+UseParNewGC"
JAVA_OPTS="$JAVA_OPTS -XX:+UseConcMarkSweepGC"
JAVA_OPTS="$JAVA_OPTS -XX:CMSInitiatingOccupancyFraction=75"
JAVA_OPTS="$JAVA_OPTS -XX:+UseCMSInitiatingOccupancyOnly"
Full GC 很少去care 它了。我们使用 Elasticsearch 在JVM上花的时间很少。
Q2:生产环境服务器如何配置性价比较高?单机CPU核数、主频?内存容量?磁盘容量?
内存大一些,CPU 多核是必要的,JVM 和 Elasticsearch 会充分使用内存和多核的。 关于内存容量的问题,很多是 JVM Tunning 的问题。 磁盘容量没啥要求。
Q3: 分组统计(Facet 查询或 aggregations )大多数时候让它在后端进行运算,怎么实现?应用如果需要实时进行统计而且并发量较大,如何优化?
因为我们是网站系统,所以对于 Facet 请求,引导到后端慢慢计算,前端初始的时候可能没数据,但是此后就会有了。
如果是精确要求的话,那就只能从 提高 facet 查询性能去下手,比如 routing、filter、cache、更多的内存...
Q4:存进Elasticsearch的数据,timestamp是UTC时间,Elasticsearch集群会在UTC 0点,也就是北京时间早上8点自动执行优化?如何改参数设置这个时间?
我们没有使用Elasticsearch的自动优化设置。自己控制优化时间。
Q5:我的Java程序,log4j2 Flume appender,然后机器上的Flume agent ,直接Elasticsearch 的sink avro到 es节点上,多少个agent 连在单个Elasticsearch节点比较合适 ?
ElasticSearch本身是一个分布式计算集群,所以,请求平均分配到每个 node 即可。
Q6:我代码里直接用 Java API 生成Flume appender 格式,Flume agent 里interceptor去拆分几个字段,这样是不是太累了?比较推荐的做法是不是还是各业务点自己控制字段,调用Elasticsearch API 生成索引内容?
业务点自己控制生成的文档吧?如果需要产生不同routing,并且分了索引,这些其实是业务相关的。routing和不同索引,都是根据业务情况哪些查询比较集中而进行处理的。
Q7:您见过或管理过的生产环境的Elasticsearch数据量多大?
我们使用 Elasticsearch 进行某些业务处理,数据量过亿。
Q8:SSD性能提升多少?
SSD 对索引帮助非常大,效果当当的,提高几十倍应该是没问题。不过,我们没有试过完全使用SSD顶查询,而是使用内存,内存性价比还是不错的。
Q9:我们现在有256个shard,用uid做routing,所有查询都是走routing。每个shard有30多G,每次扩容很慢,有什么建议?
可以考虑使用分合查询吗? 或者使用更多的维度? 256个 shard 确实比较难以控制。但是如果是分索引和查询,比more shards(256) 效果应该会好不少。
Q10:Elasticsearch排序等聚合类的操作需要用到fielddata,查询时很慢。新版本中doc values聚合查询操作性能提升很大,你们有没有用过?
Facet 查询需要更大的内存,更多的 CPU 资源。可以考虑routing、filter、cache等多种方式提高性能。
Aggs 将来是要替换 Facet,建议尽快替换原来的facet API。
Q11:Elasticsearch配置bootstrap.mlockall,我们在使用中发现会导致启动很慢,因为Elasticsearch要获取到足够的内存才开始启动。
启动慢是可以接受的,启动慢的原因也许是内存没有有效释放过,比如文件 cached了。 内存充足的情况下,启动速度还是蛮快的,可以接受。 JVM 和 Lucene 都需要内存,一般是JVM 50%, 剩下的50% 文件cached 为Lucene 使用。
Q12:优化是一个开销比较大的操作,每天优化的时候是否会导致查询不可用?如何优化这块?
优化是开销很大的。不会导致查询不可用。优化是值得的,大量的碎片会导致查询性能大大降低。 如果非常 care 查询,可以考虑多个集群。在优化时,查询 skip 这个集群就可以。
Q13:Elasticsearch适合做到10亿级数据查询,每天千万级的数据实时写入或更新吗?
10亿是可以做到的,如果文档轻量,10亿所占的资源还不是很多。
ELK 使用 Elasticsearch ,进行日志处理每天千万是小case吧?
不过我们除了使用 ELK 进行日志处理,还进行业务处理,10亿级快速查询是可以做到,不过,需要做一些工作,比如索引和shards的分分合合:)
Q14:Elasticsearch相比Solr有什么优势吗?
我们当年使用 Solr 的时候,Elasticsearch 刚出来。他们都是基于 Lucene的。 Elasticsearch 相对于 solr ,省事是一个优点。而且现在 Elasticsearch 相关的应用软件也越来越多。Solr 和 Lucene 集成度很高,更新版本是和Lucene一起的,这是个优点。
很多年没用 Solr了,毕竟那时候数据量还不大,所以折腾的就少了,主要还是折腾 JVM。所以,就不再过多的比较了。
Q15:分词用的什么组件?Elasticsearch自带的吗?
我们使用 IK 分词,不过其他分词也不错。IK分词更新还是很及时的。而且它可以远程更新词典。:)
Q16: reindex有没有好的方法?
reindex 这个和 Lucene 有关,它的 update 就是 delete+ add。
Q17:以上面的两个例子为例 : 是存储多份同样的数据么?
是两个集群。第一个集群使用大城市分索引,不过,还有大部分小城市合并一个索引。大城市还是用类目进行routing,小城市合并的索引就使用城市进行routing 。
第二个集群,大类分得索引,比如fang、che,房屋和车辆和其他类目在一个集群上,他们使用 city+二级类目做routing。
Q18:集群部署有没有使用 Docker ? 我们使用的时候 ,同一个服务器 节点之间的互相发现没有问题 ,但是跨机器的时候需要强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群互相发现问题。
我们使用puppet进行部署。暂没使用 Docker。 强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群,跨IP段的时候是有这个需要。
Q19:您建议采用什么样的数据总线架构来保证业务数据按routing写入多个Elasticsearch集群,怎么保证多集群Elasticsearch中的数据与数据库中数据的一致性?
我们以前使用 php在web代码中进行索引和分析 query,然后引导到不同集群。 现在我们开发了一套go rest系统——4sea,使用 redis + elastic 以综合提高性能。
索引时,更新db的同时,提交一个文档 ID 通知4sea 进行更新,然后根据配置更新到不同集群。
数据提交到查询时,就是分析 query 并引导到不同集群。
这套 4sea 系统,有机会的可以考虑开源,不算很复杂的。
Q20: 能介绍一下Elasticsearch的集群rebanlance、段合并相关的原理和经验吗?
“段”合并?,我们是根据业务特点,产生几个不一样的集群,主要还是 routing 不一样。
shards 比较平均很重要的,所以选择routing 维度是难点,选择城市的话,大城市所在分片会非常大,此时可以考虑 分索引,几个大城市几个索引,然后小城市合并一个索引。
如果 shards 大小分布平均的话,就不关心如何 allocation 了。
Q21:关于集群rebalance,其实就是cluster.routing.allocation配置下的那些rebalance相关的设置,比如allow_rebalance/cluster_concurrent_rebalance/node_initial_primaries_recoveries,推荐怎么配置?
分片多的情况下,这个才是需要的吧。
分片比较少时,allow_rebalance disable,然后手动也可以接受的。
分片多,一般情况会自动平衡。我们对主从不太关心。只是如果一台机器多个 JVM instance (多个 Elasticsearch node)的话,我们写了个脚本来避免同一shard 在一台机器上。
cluster_concurrent_rebalance 在恢复的时候根据情况修改。正常情况下,再改成默认就好了。
node_initial_primaries_recoveries,在保证集群低压的情况下,不怎么care。
kopf 上面有好多这种配置,你可以多试试。
Q22:合并查询是异步请求还是同步请求?做缓存吗?
合并查询是 Elasticsearch 自带 API。
Q23:用http url connection请求的时候,会发现返回请求很耗时,一般怎么处理?
尽可能减少慢查询吧?我们很多工作就是想办法如何减少慢查询,routing和分分合合,就是这个目的。
Q24:生产环境单个节点存储多少G数据?
有大的,有小的。小的也几十G了。不过根据我们自己的业务特点,某些集群就去掉了全文索引。唯一的全文索引,使用基本的routing(比较平衡的routing,比如user。城市的话,就做不到平衡了,因为大城市数据很多),然后做了 快照,反正是增量快照,1小时甚至更短时间都可以考虑!!!去掉全文索引的其他业务集群,就小多了。
本次分享主要包含两个方面的实战经验:索引性能和查询性能。
一. 索引性能(Index Performance)
首先要考虑的是,索引性能是否有必要做优化?
索引速度提高与否?主要是看瓶颈在什么地方,若是 Read DB(产生DOC)的速度比较慢,那瓶颈不在 ElasticSearch 时,优化就没那么大的动力。实际上 Elasticsearch 的索引速度还是非常快的。
我们有一次遇到 Elasticsearch 升级后索引速度很慢,查下来是新版 IK 分词的问题,修改分词插件后得到解决。
如果需要优化,应该如何优化?
SSD 是经济压力能承受情况下的不二选择。减少碎片也可以提高索引速度,每天进行优化还是很有必要的。在初次索引的时候,把 replica 设置为 0,也能提高索引速度。
bulk 是不是一定需要呢?
若是 Elasticsearch 普通索引已经导致高企的 LA,IO 压力已经见顶,这时候 bulk 也无法提供帮助,SSD 应该是很好的选择。
在 create doc 速度能跟上的时候,bulk 是可以提高速度的。
记得 threadpool.index.queue_size ++,不然会出现索引时队列不够用的情况。
indices.memory.index_buffer_size:10% 这个参数可以进行适当调整。
调整如下参数也可以提高索引速度:index.translog.flush_threshold_ops:50000 和 refresh_interval。
二. 查询性能(Query Perofrmance)
王道是什么?routing,routing,还是 routing。
我们为了提高查询速度,减少慢查询,结合自己的业务实践,使用多个集群,每个集群使用不同的 routing。比如,用户是一个routing维度。
在实践中,这个routing 非常重要。
我们碰到一种情况,想把此维度的查询(即用户查询)引到非用户routing 的集群,结果集群完全顶不住!
在大型的本地分类网站中,城市、类目也是一个不错的维度。我们使用这种维度进行各种搭配。然后在前端分析查询,把各个不同查询分别引入合适的集群。这样做以后,每个集群只需要很少的机器,而且保持很小的 CPU Usage 和 LA。从而查询速度够快,慢查询几乎消灭。
分合?
分别(索引和routing)查询和合并(索引和routing)查询,即此分合的意思。
索引越来越大,单个 shard 也很巨大,查询速度也越来越慢。这时候,是选择分索引还是更多的shards?
在实践过程中,更多的 shards 会带来额外的索引压力,即 IO 压力。
我们选择了分索引。比如按照每个大分类一个索引,或者主要的大城市一个索引。然后将他们进行合并查询。如:http://cluster1:9200/shanghai,beijing/_search?routing=fang,自动将查询中城市属性且值为上海或北京的查询,且是房类目的,引入集群 cluster1,并且routing等于fang。
http://cluster1:9200/other/_search?routing=jinan,linyi。小城市的索引,我们使用城市做 routing,如本例中同时查询济南和临沂城市。
http://cluster1:9200/_all/_search,全部城市查询。
再如: http://cluster2:9200/fang,che/_search?routing=shanghai_qiche,shanghai_zufang,beijing_qiche,beijing_zufang。查询上海和北京在小分类汽车、整租的信息,那我们进行如上合并查询。并将其引入集群 cluster2。
使用更多的 shards?
除了有 IO 压力,而且不能进行全部城市或全部类目查询,因为完全顶不住。
Elastic 官方文档建议:一个 Node 最好不要多于三个 shards。
若是 "more shards”,除了增加更多的机器,是没办法做到这一点的。
分索引,虽然一个 Node 总的shards 还是挺多的,但是一个索引可以保持3个以内的shards。
我们使用分索引时,全量查询是可以顶住的,虽然压力有点儿高。
索引越来越大,资源使用也越来越多。若是要进行更细的集群分配,大索引使用的资源成倍增加。
有什么办法能减小索引?显然,创建 doc 时,把不需要的 field 去掉是一个办法;但是,这需要对业务非常熟悉。
有啥立竿见影的办法?
根据我们信息的特点,内容(field:description)占了索引的一大半,那我们就不把 description 索引进 ES,doc 小了一倍,集群也小了一倍,所用的资源(Memory, HD or SSD, Host, snapshot存储,还有时间)大大节省,查询速度自然也更快。
那要查 description 怎么办?
上面的实例中,我们可以把查询引入不同集群,自然我们也可以把 description 查询引入一个非实时(也可以实时)集群,这主要是我们业务特点决定的,因为description查询所占比例非常小,使得我们可以这样做。
被哪些查询搞过?第一位是 Range 查询,这货的性能真不敢恭维。在最热的查询中,若是有这货,肯定是非常痛苦的,网页变慢,查询速度变慢,集群 LA 高企,严重的时候会导致集群 shard 自动下线。所以,建议在最热的查询中避免使用 Range 查询。
Facet 查询,在后续版本这个被 aggregations 替代,我们大多数时候让它在后端进行运算。
三. 其他
1)线程池
线程池我们默认使用 fixed,使用 cached 有可能控制不好。主要是比较大的分片 relocation时,会导致分片自动下线,集群可能处于危险状态。在集群高压时,若是 cached ,分片也可能自动下线。自 1.4 版本后,我们就一直 fixed,至于新版是否还存在这个问题,就没再试验了。
两个原因:一是 routing王道带来的改善,使得集群一直低压运行;二是使用fixed 后,已经极少遇到自动下线shard了。
我们前面说过,user 是一个非常好的维度。这个维度很重要,routing 效果非常明显。其他维度,需要根据业务特点,进行组合。
所以我们的集群一直是低压运行,就很少再去关注新版本的 使用 cached 配置问题。
hreadpool.search.queue_size 这个配置是很重要的,一般默认是够用了,可以尝试提高。
2)优化
每天优化是有好处的,可以大大改善查询性能。max_num_segments 建议配置为1。虽然优化时间会变长,但是在高峰期前能完成的话,会对查询性能有很大好处。
3) JVM GC的选择:选择 G1还是 CMS?
应该大多数人还是选择了 CMS,我们使用的经验是 G1 和 CMS 比较接近;但和 CMS 相比,还是有一点距离,至少在我们使用经验中是如此。
JVM 32G 现象?
128G内存的机器配置一个 JVM,然后是巨大的 heapsize (如64G)?
还是配多个 JVM instance,较小的 heapsize(如32G)?
我的建议是后者。实际使用中,后者也能帮助我们节省不少资源,并提供不错的性能。具体请参阅 “Don’t Cross 32 GB!" (https://www.elastic.co/guide/e ... _oops)
跨 32G 时,有一个现象,使用更多的内存,比如 40G,效果还不如31G!
这篇文档值得大家仔细阅读。
JVM 还有一个配置 bootstrap.mlockall: true,比较重要。这是让 JVM 启动的时候就 锁定 heap 内存。
有没有用过 较小的 heapsize,加上SSD?我听说有人使用过,效果还不错,当然,我们自己还没试过。
4)插件工具
推荐 kopf,是一个挺不错的工具,更新及时,功能完备,可以让你忘掉很多 API :)。
上面是 kopf 的图片。管理Elasticsearch 集群真心方便。以前那些 API ,慢慢要忘光了:)
索引,查询,和一些重要的配置,是今天分享的重点。
Q&A
Q1:您建议生产环境JVM采用什么样的参数设置?FULL GC频率和时间如何?
CMS 标准配置。
ES_HEAP_NEWSIZE=?G
JAVA_OPTS="$JAVA_OPTS -XX:+UseCondCardMark"
JAVA_OPTS="$JAVA_OPTS -XX:CMSWaitDuration=250"
JAVA_OPTS="$JAVA_OPTS -XX:+UseParNewGC"
JAVA_OPTS="$JAVA_OPTS -XX:+UseConcMarkSweepGC"
JAVA_OPTS="$JAVA_OPTS -XX:CMSInitiatingOccupancyFraction=75"
JAVA_OPTS="$JAVA_OPTS -XX:+UseCMSInitiatingOccupancyOnly"
Full GC 很少去care 它了。我们使用 Elasticsearch 在JVM上花的时间很少。
Q2:生产环境服务器如何配置性价比较高?单机CPU核数、主频?内存容量?磁盘容量?
内存大一些,CPU 多核是必要的,JVM 和 Elasticsearch 会充分使用内存和多核的。 关于内存容量的问题,很多是 JVM Tunning 的问题。 磁盘容量没啥要求。
Q3: 分组统计(Facet 查询或 aggregations )大多数时候让它在后端进行运算,怎么实现?应用如果需要实时进行统计而且并发量较大,如何优化?
因为我们是网站系统,所以对于 Facet 请求,引导到后端慢慢计算,前端初始的时候可能没数据,但是此后就会有了。
如果是精确要求的话,那就只能从 提高 facet 查询性能去下手,比如 routing、filter、cache、更多的内存...
Q4:存进Elasticsearch的数据,timestamp是UTC时间,Elasticsearch集群会在UTC 0点,也就是北京时间早上8点自动执行优化?如何改参数设置这个时间?
我们没有使用Elasticsearch的自动优化设置。自己控制优化时间。
Q5:我的Java程序,log4j2 Flume appender,然后机器上的Flume agent ,直接Elasticsearch 的sink avro到 es节点上,多少个agent 连在单个Elasticsearch节点比较合适 ?
ElasticSearch本身是一个分布式计算集群,所以,请求平均分配到每个 node 即可。
Q6:我代码里直接用 Java API 生成Flume appender 格式,Flume agent 里interceptor去拆分几个字段,这样是不是太累了?比较推荐的做法是不是还是各业务点自己控制字段,调用Elasticsearch API 生成索引内容?
业务点自己控制生成的文档吧?如果需要产生不同routing,并且分了索引,这些其实是业务相关的。routing和不同索引,都是根据业务情况哪些查询比较集中而进行处理的。
Q7:您见过或管理过的生产环境的Elasticsearch数据量多大?
我们使用 Elasticsearch 进行某些业务处理,数据量过亿。
Q8:SSD性能提升多少?
SSD 对索引帮助非常大,效果当当的,提高几十倍应该是没问题。不过,我们没有试过完全使用SSD顶查询,而是使用内存,内存性价比还是不错的。
Q9:我们现在有256个shard,用uid做routing,所有查询都是走routing。每个shard有30多G,每次扩容很慢,有什么建议?
可以考虑使用分合查询吗? 或者使用更多的维度? 256个 shard 确实比较难以控制。但是如果是分索引和查询,比more shards(256) 效果应该会好不少。
Q10:Elasticsearch排序等聚合类的操作需要用到fielddata,查询时很慢。新版本中doc values聚合查询操作性能提升很大,你们有没有用过?
Facet 查询需要更大的内存,更多的 CPU 资源。可以考虑routing、filter、cache等多种方式提高性能。
Aggs 将来是要替换 Facet,建议尽快替换原来的facet API。
Q11:Elasticsearch配置bootstrap.mlockall,我们在使用中发现会导致启动很慢,因为Elasticsearch要获取到足够的内存才开始启动。
启动慢是可以接受的,启动慢的原因也许是内存没有有效释放过,比如文件 cached了。 内存充足的情况下,启动速度还是蛮快的,可以接受。 JVM 和 Lucene 都需要内存,一般是JVM 50%, 剩下的50% 文件cached 为Lucene 使用。
Q12:优化是一个开销比较大的操作,每天优化的时候是否会导致查询不可用?如何优化这块?
优化是开销很大的。不会导致查询不可用。优化是值得的,大量的碎片会导致查询性能大大降低。 如果非常 care 查询,可以考虑多个集群。在优化时,查询 skip 这个集群就可以。
Q13:Elasticsearch适合做到10亿级数据查询,每天千万级的数据实时写入或更新吗?
10亿是可以做到的,如果文档轻量,10亿所占的资源还不是很多。
ELK 使用 Elasticsearch ,进行日志处理每天千万是小case吧?
不过我们除了使用 ELK 进行日志处理,还进行业务处理,10亿级快速查询是可以做到,不过,需要做一些工作,比如索引和shards的分分合合:)
Q14:Elasticsearch相比Solr有什么优势吗?
我们当年使用 Solr 的时候,Elasticsearch 刚出来。他们都是基于 Lucene的。 Elasticsearch 相对于 solr ,省事是一个优点。而且现在 Elasticsearch 相关的应用软件也越来越多。Solr 和 Lucene 集成度很高,更新版本是和Lucene一起的,这是个优点。
很多年没用 Solr了,毕竟那时候数据量还不大,所以折腾的就少了,主要还是折腾 JVM。所以,就不再过多的比较了。
Q15:分词用的什么组件?Elasticsearch自带的吗?
我们使用 IK 分词,不过其他分词也不错。IK分词更新还是很及时的。而且它可以远程更新词典。:)
Q16: reindex有没有好的方法?
reindex 这个和 Lucene 有关,它的 update 就是 delete+ add。
Q17:以上面的两个例子为例 : 是存储多份同样的数据么?
是两个集群。第一个集群使用大城市分索引,不过,还有大部分小城市合并一个索引。大城市还是用类目进行routing,小城市合并的索引就使用城市进行routing 。
第二个集群,大类分得索引,比如fang、che,房屋和车辆和其他类目在一个集群上,他们使用 city+二级类目做routing。
Q18:集群部署有没有使用 Docker ? 我们使用的时候 ,同一个服务器 节点之间的互相发现没有问题 ,但是跨机器的时候需要强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群互相发现问题。
我们使用puppet进行部署。暂没使用 Docker。 强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群,跨IP段的时候是有这个需要。
Q19:您建议采用什么样的数据总线架构来保证业务数据按routing写入多个Elasticsearch集群,怎么保证多集群Elasticsearch中的数据与数据库中数据的一致性?
我们以前使用 php在web代码中进行索引和分析 query,然后引导到不同集群。 现在我们开发了一套go rest系统——4sea,使用 redis + elastic 以综合提高性能。
索引时,更新db的同时,提交一个文档 ID 通知4sea 进行更新,然后根据配置更新到不同集群。
数据提交到查询时,就是分析 query 并引导到不同集群。
这套 4sea 系统,有机会的可以考虑开源,不算很复杂的。
Q20: 能介绍一下Elasticsearch的集群rebanlance、段合并相关的原理和经验吗?
“段”合并?,我们是根据业务特点,产生几个不一样的集群,主要还是 routing 不一样。
shards 比较平均很重要的,所以选择routing 维度是难点,选择城市的话,大城市所在分片会非常大,此时可以考虑 分索引,几个大城市几个索引,然后小城市合并一个索引。
如果 shards 大小分布平均的话,就不关心如何 allocation 了。
Q21:关于集群rebalance,其实就是cluster.routing.allocation配置下的那些rebalance相关的设置,比如allow_rebalance/cluster_concurrent_rebalance/node_initial_primaries_recoveries,推荐怎么配置?
分片多的情况下,这个才是需要的吧。
分片比较少时,allow_rebalance disable,然后手动也可以接受的。
分片多,一般情况会自动平衡。我们对主从不太关心。只是如果一台机器多个 JVM instance (多个 Elasticsearch node)的话,我们写了个脚本来避免同一shard 在一台机器上。
cluster_concurrent_rebalance 在恢复的时候根据情况修改。正常情况下,再改成默认就好了。
node_initial_primaries_recoveries,在保证集群低压的情况下,不怎么care。
kopf 上面有好多这种配置,你可以多试试。
Q22:合并查询是异步请求还是同步请求?做缓存吗?
合并查询是 Elasticsearch 自带 API。
Q23:用http url connection请求的时候,会发现返回请求很耗时,一般怎么处理?
尽可能减少慢查询吧?我们很多工作就是想办法如何减少慢查询,routing和分分合合,就是这个目的。
Q24:生产环境单个节点存储多少G数据?
有大的,有小的。小的也几十G了。不过根据我们自己的业务特点,某些集群就去掉了全文索引。唯一的全文索引,使用基本的routing(比较平衡的routing,比如user。城市的话,就做不到平衡了,因为大城市数据很多),然后做了 快照,反正是增量快照,1小时甚至更短时间都可以考虑!!!去掉全文索引的其他业务集群,就小多了。
收起阅读 »
一. 索引性能(Index Performance)
首先要考虑的是,索引性能是否有必要做优化?
索引速度提高与否?主要是看瓶颈在什么地方,若是 Read DB(产生DOC)的速度比较慢,那瓶颈不在 ElasticSearch 时,优化就没那么大的动力。实际上 Elasticsearch 的索引速度还是非常快的。
我们有一次遇到 Elasticsearch 升级后索引速度很慢,查下来是新版 IK 分词的问题,修改分词插件后得到解决。
如果需要优化,应该如何优化?
SSD 是经济压力能承受情况下的不二选择。减少碎片也可以提高索引速度,每天进行优化还是很有必要的。在初次索引的时候,把 replica 设置为 0,也能提高索引速度。
bulk 是不是一定需要呢?
若是 Elasticsearch 普通索引已经导致高企的 LA,IO 压力已经见顶,这时候 bulk 也无法提供帮助,SSD 应该是很好的选择。
在 create doc 速度能跟上的时候,bulk 是可以提高速度的。
记得 threadpool.index.queue_size ++,不然会出现索引时队列不够用的情况。
indices.memory.index_buffer_size:10% 这个参数可以进行适当调整。
调整如下参数也可以提高索引速度:index.translog.flush_threshold_ops:50000 和 refresh_interval。
二. 查询性能(Query Perofrmance)
王道是什么?routing,routing,还是 routing。
我们为了提高查询速度,减少慢查询,结合自己的业务实践,使用多个集群,每个集群使用不同的 routing。比如,用户是一个routing维度。
在实践中,这个routing 非常重要。
我们碰到一种情况,想把此维度的查询(即用户查询)引到非用户routing 的集群,结果集群完全顶不住!
在大型的本地分类网站中,城市、类目也是一个不错的维度。我们使用这种维度进行各种搭配。然后在前端分析查询,把各个不同查询分别引入合适的集群。这样做以后,每个集群只需要很少的机器,而且保持很小的 CPU Usage 和 LA。从而查询速度够快,慢查询几乎消灭。
分合?
分别(索引和routing)查询和合并(索引和routing)查询,即此分合的意思。
索引越来越大,单个 shard 也很巨大,查询速度也越来越慢。这时候,是选择分索引还是更多的shards?
在实践过程中,更多的 shards 会带来额外的索引压力,即 IO 压力。
我们选择了分索引。比如按照每个大分类一个索引,或者主要的大城市一个索引。然后将他们进行合并查询。如:http://cluster1:9200/shanghai,beijing/_search?routing=fang,自动将查询中城市属性且值为上海或北京的查询,且是房类目的,引入集群 cluster1,并且routing等于fang。
http://cluster1:9200/other/_search?routing=jinan,linyi。小城市的索引,我们使用城市做 routing,如本例中同时查询济南和临沂城市。
http://cluster1:9200/_all/_search,全部城市查询。
再如: http://cluster2:9200/fang,che/_search?routing=shanghai_qiche,shanghai_zufang,beijing_qiche,beijing_zufang。查询上海和北京在小分类汽车、整租的信息,那我们进行如上合并查询。并将其引入集群 cluster2。
使用更多的 shards?
除了有 IO 压力,而且不能进行全部城市或全部类目查询,因为完全顶不住。
Elastic 官方文档建议:一个 Node 最好不要多于三个 shards。
若是 "more shards”,除了增加更多的机器,是没办法做到这一点的。
分索引,虽然一个 Node 总的shards 还是挺多的,但是一个索引可以保持3个以内的shards。
我们使用分索引时,全量查询是可以顶住的,虽然压力有点儿高。
索引越来越大,资源使用也越来越多。若是要进行更细的集群分配,大索引使用的资源成倍增加。
有什么办法能减小索引?显然,创建 doc 时,把不需要的 field 去掉是一个办法;但是,这需要对业务非常熟悉。
有啥立竿见影的办法?
根据我们信息的特点,内容(field:description)占了索引的一大半,那我们就不把 description 索引进 ES,doc 小了一倍,集群也小了一倍,所用的资源(Memory, HD or SSD, Host, snapshot存储,还有时间)大大节省,查询速度自然也更快。
那要查 description 怎么办?
上面的实例中,我们可以把查询引入不同集群,自然我们也可以把 description 查询引入一个非实时(也可以实时)集群,这主要是我们业务特点决定的,因为description查询所占比例非常小,使得我们可以这样做。
被哪些查询搞过?第一位是 Range 查询,这货的性能真不敢恭维。在最热的查询中,若是有这货,肯定是非常痛苦的,网页变慢,查询速度变慢,集群 LA 高企,严重的时候会导致集群 shard 自动下线。所以,建议在最热的查询中避免使用 Range 查询。
Facet 查询,在后续版本这个被 aggregations 替代,我们大多数时候让它在后端进行运算。
三. 其他
1)线程池
线程池我们默认使用 fixed,使用 cached 有可能控制不好。主要是比较大的分片 relocation时,会导致分片自动下线,集群可能处于危险状态。在集群高压时,若是 cached ,分片也可能自动下线。自 1.4 版本后,我们就一直 fixed,至于新版是否还存在这个问题,就没再试验了。
两个原因:一是 routing王道带来的改善,使得集群一直低压运行;二是使用fixed 后,已经极少遇到自动下线shard了。
我们前面说过,user 是一个非常好的维度。这个维度很重要,routing 效果非常明显。其他维度,需要根据业务特点,进行组合。
所以我们的集群一直是低压运行,就很少再去关注新版本的 使用 cached 配置问题。
hreadpool.search.queue_size 这个配置是很重要的,一般默认是够用了,可以尝试提高。
2)优化
每天优化是有好处的,可以大大改善查询性能。max_num_segments 建议配置为1。虽然优化时间会变长,但是在高峰期前能完成的话,会对查询性能有很大好处。
3) JVM GC的选择:选择 G1还是 CMS?
应该大多数人还是选择了 CMS,我们使用的经验是 G1 和 CMS 比较接近;但和 CMS 相比,还是有一点距离,至少在我们使用经验中是如此。
JVM 32G 现象?
128G内存的机器配置一个 JVM,然后是巨大的 heapsize (如64G)?
还是配多个 JVM instance,较小的 heapsize(如32G)?
我的建议是后者。实际使用中,后者也能帮助我们节省不少资源,并提供不错的性能。具体请参阅 “Don’t Cross 32 GB!" (https://www.elastic.co/guide/e ... _oops)
跨 32G 时,有一个现象,使用更多的内存,比如 40G,效果还不如31G!
这篇文档值得大家仔细阅读。
JVM 还有一个配置 bootstrap.mlockall: true,比较重要。这是让 JVM 启动的时候就 锁定 heap 内存。
有没有用过 较小的 heapsize,加上SSD?我听说有人使用过,效果还不错,当然,我们自己还没试过。
4)插件工具
推荐 kopf,是一个挺不错的工具,更新及时,功能完备,可以让你忘掉很多 API :)。
上面是 kopf 的图片。管理Elasticsearch 集群真心方便。以前那些 API ,慢慢要忘光了:)
索引,查询,和一些重要的配置,是今天分享的重点。
Q&A
Q1:您建议生产环境JVM采用什么样的参数设置?FULL GC频率和时间如何?
CMS 标准配置。
ES_HEAP_NEWSIZE=?G
JAVA_OPTS="$JAVA_OPTS -XX:+UseCondCardMark"
JAVA_OPTS="$JAVA_OPTS -XX:CMSWaitDuration=250"
JAVA_OPTS="$JAVA_OPTS -XX:+UseParNewGC"
JAVA_OPTS="$JAVA_OPTS -XX:+UseConcMarkSweepGC"
JAVA_OPTS="$JAVA_OPTS -XX:CMSInitiatingOccupancyFraction=75"
JAVA_OPTS="$JAVA_OPTS -XX:+UseCMSInitiatingOccupancyOnly"
Full GC 很少去care 它了。我们使用 Elasticsearch 在JVM上花的时间很少。
Q2:生产环境服务器如何配置性价比较高?单机CPU核数、主频?内存容量?磁盘容量?
内存大一些,CPU 多核是必要的,JVM 和 Elasticsearch 会充分使用内存和多核的。 关于内存容量的问题,很多是 JVM Tunning 的问题。 磁盘容量没啥要求。
Q3: 分组统计(Facet 查询或 aggregations )大多数时候让它在后端进行运算,怎么实现?应用如果需要实时进行统计而且并发量较大,如何优化?
因为我们是网站系统,所以对于 Facet 请求,引导到后端慢慢计算,前端初始的时候可能没数据,但是此后就会有了。
如果是精确要求的话,那就只能从 提高 facet 查询性能去下手,比如 routing、filter、cache、更多的内存...
Q4:存进Elasticsearch的数据,timestamp是UTC时间,Elasticsearch集群会在UTC 0点,也就是北京时间早上8点自动执行优化?如何改参数设置这个时间?
我们没有使用Elasticsearch的自动优化设置。自己控制优化时间。
Q5:我的Java程序,log4j2 Flume appender,然后机器上的Flume agent ,直接Elasticsearch 的sink avro到 es节点上,多少个agent 连在单个Elasticsearch节点比较合适 ?
ElasticSearch本身是一个分布式计算集群,所以,请求平均分配到每个 node 即可。
Q6:我代码里直接用 Java API 生成Flume appender 格式,Flume agent 里interceptor去拆分几个字段,这样是不是太累了?比较推荐的做法是不是还是各业务点自己控制字段,调用Elasticsearch API 生成索引内容?
业务点自己控制生成的文档吧?如果需要产生不同routing,并且分了索引,这些其实是业务相关的。routing和不同索引,都是根据业务情况哪些查询比较集中而进行处理的。
Q7:您见过或管理过的生产环境的Elasticsearch数据量多大?
我们使用 Elasticsearch 进行某些业务处理,数据量过亿。
Q8:SSD性能提升多少?
SSD 对索引帮助非常大,效果当当的,提高几十倍应该是没问题。不过,我们没有试过完全使用SSD顶查询,而是使用内存,内存性价比还是不错的。
Q9:我们现在有256个shard,用uid做routing,所有查询都是走routing。每个shard有30多G,每次扩容很慢,有什么建议?
可以考虑使用分合查询吗? 或者使用更多的维度? 256个 shard 确实比较难以控制。但是如果是分索引和查询,比more shards(256) 效果应该会好不少。
Q10:Elasticsearch排序等聚合类的操作需要用到fielddata,查询时很慢。新版本中doc values聚合查询操作性能提升很大,你们有没有用过?
Facet 查询需要更大的内存,更多的 CPU 资源。可以考虑routing、filter、cache等多种方式提高性能。
Aggs 将来是要替换 Facet,建议尽快替换原来的facet API。
Q11:Elasticsearch配置bootstrap.mlockall,我们在使用中发现会导致启动很慢,因为Elasticsearch要获取到足够的内存才开始启动。
启动慢是可以接受的,启动慢的原因也许是内存没有有效释放过,比如文件 cached了。 内存充足的情况下,启动速度还是蛮快的,可以接受。 JVM 和 Lucene 都需要内存,一般是JVM 50%, 剩下的50% 文件cached 为Lucene 使用。
Q12:优化是一个开销比较大的操作,每天优化的时候是否会导致查询不可用?如何优化这块?
优化是开销很大的。不会导致查询不可用。优化是值得的,大量的碎片会导致查询性能大大降低。 如果非常 care 查询,可以考虑多个集群。在优化时,查询 skip 这个集群就可以。
Q13:Elasticsearch适合做到10亿级数据查询,每天千万级的数据实时写入或更新吗?
10亿是可以做到的,如果文档轻量,10亿所占的资源还不是很多。
ELK 使用 Elasticsearch ,进行日志处理每天千万是小case吧?
不过我们除了使用 ELK 进行日志处理,还进行业务处理,10亿级快速查询是可以做到,不过,需要做一些工作,比如索引和shards的分分合合:)
Q14:Elasticsearch相比Solr有什么优势吗?
我们当年使用 Solr 的时候,Elasticsearch 刚出来。他们都是基于 Lucene的。 Elasticsearch 相对于 solr ,省事是一个优点。而且现在 Elasticsearch 相关的应用软件也越来越多。Solr 和 Lucene 集成度很高,更新版本是和Lucene一起的,这是个优点。
很多年没用 Solr了,毕竟那时候数据量还不大,所以折腾的就少了,主要还是折腾 JVM。所以,就不再过多的比较了。
Q15:分词用的什么组件?Elasticsearch自带的吗?
我们使用 IK 分词,不过其他分词也不错。IK分词更新还是很及时的。而且它可以远程更新词典。:)
Q16: reindex有没有好的方法?
reindex 这个和 Lucene 有关,它的 update 就是 delete+ add。
Q17:以上面的两个例子为例 : 是存储多份同样的数据么?
是两个集群。第一个集群使用大城市分索引,不过,还有大部分小城市合并一个索引。大城市还是用类目进行routing,小城市合并的索引就使用城市进行routing 。
第二个集群,大类分得索引,比如fang、che,房屋和车辆和其他类目在一个集群上,他们使用 city+二级类目做routing。
Q18:集群部署有没有使用 Docker ? 我们使用的时候 ,同一个服务器 节点之间的互相发现没有问题 ,但是跨机器的时候需要强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群互相发现问题。
我们使用puppet进行部署。暂没使用 Docker。 强制指定network.publish_host 和 discovery.zen.ping.unicast.hosts 才能解决集群,跨IP段的时候是有这个需要。
Q19:您建议采用什么样的数据总线架构来保证业务数据按routing写入多个Elasticsearch集群,怎么保证多集群Elasticsearch中的数据与数据库中数据的一致性?
我们以前使用 php在web代码中进行索引和分析 query,然后引导到不同集群。 现在我们开发了一套go rest系统——4sea,使用 redis + elastic 以综合提高性能。
索引时,更新db的同时,提交一个文档 ID 通知4sea 进行更新,然后根据配置更新到不同集群。
数据提交到查询时,就是分析 query 并引导到不同集群。
这套 4sea 系统,有机会的可以考虑开源,不算很复杂的。
Q20: 能介绍一下Elasticsearch的集群rebanlance、段合并相关的原理和经验吗?
“段”合并?,我们是根据业务特点,产生几个不一样的集群,主要还是 routing 不一样。
shards 比较平均很重要的,所以选择routing 维度是难点,选择城市的话,大城市所在分片会非常大,此时可以考虑 分索引,几个大城市几个索引,然后小城市合并一个索引。
如果 shards 大小分布平均的话,就不关心如何 allocation 了。
Q21:关于集群rebalance,其实就是cluster.routing.allocation配置下的那些rebalance相关的设置,比如allow_rebalance/cluster_concurrent_rebalance/node_initial_primaries_recoveries,推荐怎么配置?
分片多的情况下,这个才是需要的吧。
分片比较少时,allow_rebalance disable,然后手动也可以接受的。
分片多,一般情况会自动平衡。我们对主从不太关心。只是如果一台机器多个 JVM instance (多个 Elasticsearch node)的话,我们写了个脚本来避免同一shard 在一台机器上。
cluster_concurrent_rebalance 在恢复的时候根据情况修改。正常情况下,再改成默认就好了。
node_initial_primaries_recoveries,在保证集群低压的情况下,不怎么care。
kopf 上面有好多这种配置,你可以多试试。
Q22:合并查询是异步请求还是同步请求?做缓存吗?
合并查询是 Elasticsearch 自带 API。
Q23:用http url connection请求的时候,会发现返回请求很耗时,一般怎么处理?
尽可能减少慢查询吧?我们很多工作就是想办法如何减少慢查询,routing和分分合合,就是这个目的。
Q24:生产环境单个节点存储多少G数据?
有大的,有小的。小的也几十G了。不过根据我们自己的业务特点,某些集群就去掉了全文索引。唯一的全文索引,使用基本的routing(比较平衡的routing,比如user。城市的话,就做不到平衡了,因为大城市数据很多),然后做了 快照,反正是增量快照,1小时甚至更短时间都可以考虑!!!去掉全文索引的其他业务集群,就小多了。
收起阅读 »
Elastic 收购 Opbeat,进入 APM 领域
https://www.elastic.co/blog/we ... amily
https://techcrunch.com/2017/06 ... tion/
Today, at Elastic’s customer event in London, the company announced it has acquired Opbeat, a SaaS-application performance management vendor for an undisclosed amount. All 15 employees have already joined the Elastic team.
Opbeat focuses on monitoring applications written in Javascript. What’s more, it maps production application issues directly to the relevant developer source code, making it easier to fix the problem without having to hunt in the code to find the problem area.
Elastic is probably best known for its search product, Elasticsearch, an open source search tool that runs on some of the world’s biggest properties including Wikipedia, Yelp and eBay. In recent years, the company has moved beyond straight search and into analytics, particularly focusing on log data that puts them squarely in competition with companies like Splunk. Last year, it pulled all of the products together into a platform play they called Elastic Stack.
Elastic CEO Shay Banon sees today’s acquisition through a strategic lens, giving his company a leg up on the competition by offering not only a way to search log data, but also giving insights into the applications that are generating the data and why they may be performing poorly.
Rasmus Makwarth, who was CEO at Opbeat says joining Elastic allows the company to speed up the product roadmap and take advantage of the breadth of the Elastic platform. “We’ve been running a SaaS platform for some time now, giving application insights to developers, but haven’t been able to give customers insight into the entire application,” he explained. Joining Elastic lets his company take advantage of the search tool, as well as analytics, logging and data visualization available on the Elastic platform to greatly expand the vision.
Opbeat’s employees have already joined Elastic and are working with the Elastic team to build an on-prem application to go with the existing SaaS piece. Banon said that the company hopes to take advantage of Opbeat’s cloud background to expand its cloud offerings.
Taking a cloud-native application and engineering it to be on-prem is no simple task, but the two companies hope to have an on-prem version ready in several month. It’s worth noting that Opbeat was using Elasticsearch in its product, but as Banon pointed out using a product and making it part of the stack are two different matters, and it will take a significant engineering effort to incorporate the new company into the fold as both a cloud and on-prem product.
You may recall that Cisco bought APM vendor AppDynamics earlier this year for $3.7 billion right before the company was about to IPO. While Banon wouldn’t reveal today’s purchase price, he joked that it was substantially less than that.
Given that Opbeat was founded in 2013 in Copenhagen, Denmark and has raised approximately $2.8 million, that’s a fair bet. The company will remain in Denmark.
https://www.elastic.co/blog/we ... amily
https://techcrunch.com/2017/06 ... tion/
Today, at Elastic’s customer event in London, the company announced it has acquired Opbeat, a SaaS-application performance management vendor for an undisclosed amount. All 15 employees have already joined the Elastic team.
Opbeat focuses on monitoring applications written in Javascript. What’s more, it maps production application issues directly to the relevant developer source code, making it easier to fix the problem without having to hunt in the code to find the problem area.
Elastic is probably best known for its search product, Elasticsearch, an open source search tool that runs on some of the world’s biggest properties including Wikipedia, Yelp and eBay. In recent years, the company has moved beyond straight search and into analytics, particularly focusing on log data that puts them squarely in competition with companies like Splunk. Last year, it pulled all of the products together into a platform play they called Elastic Stack.
Elastic CEO Shay Banon sees today’s acquisition through a strategic lens, giving his company a leg up on the competition by offering not only a way to search log data, but also giving insights into the applications that are generating the data and why they may be performing poorly.
Rasmus Makwarth, who was CEO at Opbeat says joining Elastic allows the company to speed up the product roadmap and take advantage of the breadth of the Elastic platform. “We’ve been running a SaaS platform for some time now, giving application insights to developers, but haven’t been able to give customers insight into the entire application,” he explained. Joining Elastic lets his company take advantage of the search tool, as well as analytics, logging and data visualization available on the Elastic platform to greatly expand the vision.
Opbeat’s employees have already joined Elastic and are working with the Elastic team to build an on-prem application to go with the existing SaaS piece. Banon said that the company hopes to take advantage of Opbeat’s cloud background to expand its cloud offerings.
Taking a cloud-native application and engineering it to be on-prem is no simple task, but the two companies hope to have an on-prem version ready in several month. It’s worth noting that Opbeat was using Elasticsearch in its product, but as Banon pointed out using a product and making it part of the stack are two different matters, and it will take a significant engineering effort to incorporate the new company into the fold as both a cloud and on-prem product.
You may recall that Cisco bought APM vendor AppDynamics earlier this year for $3.7 billion right before the company was about to IPO. While Banon wouldn’t reveal today’s purchase price, he joked that it was substantially less than that.
Given that Opbeat was founded in 2013 in Copenhagen, Denmark and has raised approximately $2.8 million, that’s a fair bet. The company will remain in Denmark. 收起阅读 »
ELK使用不完全记录
ELK入门搭建参考文章
ELK入门搭建参考文章
【线下活动】2017-06-25 杭州 Elastic Meetup日程安排
报名链接:http://elasticsearch.mikecrm.com/O6o0yq3
1.举办方
主办:Elastic 中文社区
协办:魔蝎科技
独家直播:
IT大咖说
2. 时间地点
活动时间:2017年6月25日 13:30 - 18:00
活动地点:杭州市西湖区文一西路767号西溪国际商务中心E座1楼会议室
3. 主题
分享一:基于ElasticSearch构建搜索云服务
演讲者简介:
陈超,七牛云技术总监,Spark Summit China 出品人, 专注于大规模分布式计算与机器学习领域。
主题简介:
介绍七牛基于 Elasticsearch 如何构建大规模搜索云服务的经验和思考。
分享二:采用Elasticsearch构建大规模通用搜索平台的经验分享
演讲者简介:
马华标 - 城破 蚂蚁金服中间件搜索负责人, 12年加入阿里巴巴任职于B2B中文站架构部、数据仓库架构组组长,14年加入蚂蚁金服担任中间件搜索负责人, 从事搜索方面的团队建设与产品研发工作。
主题简介:
介绍蚂蚁金服采用Elasticsearch构建大规模通用搜索平台的经验分享。
分享三:垂直搜索引擎系统架构
演讲者简介:
吴英昊 花名:丰坚
蚂蚁金服数据中间件技术专家,曾任职于当当网,担任搜索架构师(兼开发经理)职位,负责当当网的搜索后台的技术架构和技术团队的管理,包括搜索引擎架构,搜索排序和 Query 分析,后在一创业公司负责推荐和广告系统架构和算法相关工作。 目前在蚂蚁金服数据中间件搜索组技术专家。
主题简介:
主题 “垂直搜索引擎系统架构”,介绍如何采用 Elasticsearch 构建大规模通用搜索平台。会穿插一些关于ES在垂直搜索中的应用和优化方向。
分享四:Metricbeat 在容器监控方面的应用
演讲者简介:
曾勇(Medcl) Elastic 工程师与布道师
Elasticsearch 爱好者,2015年加入 Elastic,Elastic 中文社区的发起人,Elastic 公司在中国的首位员工。
主题简介:
使用 Docker 或者其他的容器方案来进行部署已经成为热门,今天的分享将介绍如何使用 Metricbeat 来收集和监控您的容器化部署环境,结合 Elasticsearch 和 Kibana 对容器的性能进行全方位的了解。
继续阅读 »
1.举办方
主办:Elastic 中文社区
协办:魔蝎科技
独家直播:
IT大咖说
2. 时间地点
活动时间:2017年6月25日 13:30 - 18:00
活动地点:杭州市西湖区文一西路767号西溪国际商务中心E座1楼会议室
3. 主题
分享一:基于ElasticSearch构建搜索云服务
演讲者简介:
陈超,七牛云技术总监,Spark Summit China 出品人, 专注于大规模分布式计算与机器学习领域。
主题简介:
介绍七牛基于 Elasticsearch 如何构建大规模搜索云服务的经验和思考。
分享二:采用Elasticsearch构建大规模通用搜索平台的经验分享
演讲者简介:
马华标 - 城破 蚂蚁金服中间件搜索负责人, 12年加入阿里巴巴任职于B2B中文站架构部、数据仓库架构组组长,14年加入蚂蚁金服担任中间件搜索负责人, 从事搜索方面的团队建设与产品研发工作。
主题简介:
介绍蚂蚁金服采用Elasticsearch构建大规模通用搜索平台的经验分享。
分享三:垂直搜索引擎系统架构
演讲者简介:
吴英昊 花名:丰坚
蚂蚁金服数据中间件技术专家,曾任职于当当网,担任搜索架构师(兼开发经理)职位,负责当当网的搜索后台的技术架构和技术团队的管理,包括搜索引擎架构,搜索排序和 Query 分析,后在一创业公司负责推荐和广告系统架构和算法相关工作。 目前在蚂蚁金服数据中间件搜索组技术专家。
主题简介:
主题 “垂直搜索引擎系统架构”,介绍如何采用 Elasticsearch 构建大规模通用搜索平台。会穿插一些关于ES在垂直搜索中的应用和优化方向。
分享四:Metricbeat 在容器监控方面的应用
演讲者简介:
曾勇(Medcl) Elastic 工程师与布道师
Elasticsearch 爱好者,2015年加入 Elastic,Elastic 中文社区的发起人,Elastic 公司在中国的首位员工。
主题简介:
使用 Docker 或者其他的容器方案来进行部署已经成为热门,今天的分享将介绍如何使用 Metricbeat 来收集和监控您的容器化部署环境,结合 Elasticsearch 和 Kibana 对容器的性能进行全方位的了解。
报名链接:http://elasticsearch.mikecrm.com/O6o0yq3
1.举办方
主办:Elastic 中文社区
协办:魔蝎科技
独家直播:
IT大咖说
2. 时间地点
活动时间:2017年6月25日 13:30 - 18:00
活动地点:杭州市西湖区文一西路767号西溪国际商务中心E座1楼会议室
3. 主题
分享一:基于ElasticSearch构建搜索云服务
演讲者简介:
陈超,七牛云技术总监,Spark Summit China 出品人, 专注于大规模分布式计算与机器学习领域。
主题简介:
介绍七牛基于 Elasticsearch 如何构建大规模搜索云服务的经验和思考。
分享二:采用Elasticsearch构建大规模通用搜索平台的经验分享
演讲者简介:
马华标 - 城破 蚂蚁金服中间件搜索负责人, 12年加入阿里巴巴任职于B2B中文站架构部、数据仓库架构组组长,14年加入蚂蚁金服担任中间件搜索负责人, 从事搜索方面的团队建设与产品研发工作。
主题简介:
介绍蚂蚁金服采用Elasticsearch构建大规模通用搜索平台的经验分享。
分享三:垂直搜索引擎系统架构
演讲者简介:
吴英昊 花名:丰坚
蚂蚁金服数据中间件技术专家,曾任职于当当网,担任搜索架构师(兼开发经理)职位,负责当当网的搜索后台的技术架构和技术团队的管理,包括搜索引擎架构,搜索排序和 Query 分析,后在一创业公司负责推荐和广告系统架构和算法相关工作。 目前在蚂蚁金服数据中间件搜索组技术专家。
主题简介:
主题 “垂直搜索引擎系统架构”,介绍如何采用 Elasticsearch 构建大规模通用搜索平台。会穿插一些关于ES在垂直搜索中的应用和优化方向。
分享四:Metricbeat 在容器监控方面的应用
演讲者简介:
曾勇(Medcl) Elastic 工程师与布道师
Elasticsearch 爱好者,2015年加入 Elastic,Elastic 中文社区的发起人,Elastic 公司在中国的首位员工。
主题简介:
使用 Docker 或者其他的容器方案来进行部署已经成为热门,今天的分享将介绍如何使用 Metricbeat 来收集和监控您的容器化部署环境,结合 Elasticsearch 和 Kibana 对容器的性能进行全方位的了解。 收起阅读 »
1.举办方
主办:Elastic 中文社区
协办:魔蝎科技
独家直播:
IT大咖说
2. 时间地点
活动时间:2017年6月25日 13:30 - 18:00
活动地点:杭州市西湖区文一西路767号西溪国际商务中心E座1楼会议室
3. 主题
分享一:基于ElasticSearch构建搜索云服务
演讲者简介:
陈超,七牛云技术总监,Spark Summit China 出品人, 专注于大规模分布式计算与机器学习领域。
主题简介:
介绍七牛基于 Elasticsearch 如何构建大规模搜索云服务的经验和思考。
分享二:采用Elasticsearch构建大规模通用搜索平台的经验分享
演讲者简介:
马华标 - 城破 蚂蚁金服中间件搜索负责人, 12年加入阿里巴巴任职于B2B中文站架构部、数据仓库架构组组长,14年加入蚂蚁金服担任中间件搜索负责人, 从事搜索方面的团队建设与产品研发工作。
主题简介:
介绍蚂蚁金服采用Elasticsearch构建大规模通用搜索平台的经验分享。
分享三:垂直搜索引擎系统架构
演讲者简介:
吴英昊 花名:丰坚
蚂蚁金服数据中间件技术专家,曾任职于当当网,担任搜索架构师(兼开发经理)职位,负责当当网的搜索后台的技术架构和技术团队的管理,包括搜索引擎架构,搜索排序和 Query 分析,后在一创业公司负责推荐和广告系统架构和算法相关工作。 目前在蚂蚁金服数据中间件搜索组技术专家。
主题简介:
主题 “垂直搜索引擎系统架构”,介绍如何采用 Elasticsearch 构建大规模通用搜索平台。会穿插一些关于ES在垂直搜索中的应用和优化方向。
分享四:Metricbeat 在容器监控方面的应用
演讲者简介:
曾勇(Medcl) Elastic 工程师与布道师
Elasticsearch 爱好者,2015年加入 Elastic,Elastic 中文社区的发起人,Elastic 公司在中国的首位员工。
主题简介:
使用 Docker 或者其他的容器方案来进行部署已经成为热门,今天的分享将介绍如何使用 Metricbeat 来收集和监控您的容器化部署环境,结合 Elasticsearch 和 Kibana 对容器的性能进行全方位的了解。 收起阅读 »