沙师弟,师父的充电器掉了

2018 年 Elastic Advent Calendar 分享活动已结束 ??

活动规则很简单:
 
活动创意来自于圣诞节倒计时,从12月1号开始到12月25日结束。
 
每天固定一篇文章分享,内容长短都可。
 
报名现在开始,留言报名即可,留言格式: Day[日期] -  你的分享标题。

一共25篇,报满即止。
 
虽然是西方的节日,不过目的是为了大家一起分享,重在参与嘛。
 
往期活动可参考:https://elasticsearch.cn/topic/advent
 
活动参与名单:

 
 
 如何发布?
自己选择发布文章,按你的标题在12月你的这一天发布出来就好了。

1543474748734.jpg


 
继续阅读 »
活动规则很简单:
 
活动创意来自于圣诞节倒计时,从12月1号开始到12月25日结束。
 
每天固定一篇文章分享,内容长短都可。
 
报名现在开始,留言报名即可,留言格式: Day[日期] -  你的分享标题。

一共25篇,报满即止。
 
虽然是西方的节日,不过目的是为了大家一起分享,重在参与嘛。
 
往期活动可参考:https://elasticsearch.cn/topic/advent
 
活动参与名单:

 
 
 如何发布?
自己选择发布文章,按你的标题在12月你的这一天发布出来就好了。

1543474748734.jpg


  收起阅读 »

社区日报 第454期 (2018-11-20)

1、快速体验Elasticsearch 6.5带来的新特性。
http://t.cn/E20PA5a
2、GitLab 11.5 将支持 Elasticsearch 6,放弃支持5.5。
http://t.cn/E20Pq9j
3、ElasticSearch搜索之布尔和聚合。
http://t.cn/E20PxFB

编辑:叮咚光军
归档:https://elasticsearch.cn/article/6148
订阅:https://tinyletter.com/elastic-daily
继续阅读 »
1、快速体验Elasticsearch 6.5带来的新特性。
http://t.cn/E20PA5a
2、GitLab 11.5 将支持 Elasticsearch 6,放弃支持5.5。
http://t.cn/E20Pq9j
3、ElasticSearch搜索之布尔和聚合。
http://t.cn/E20PxFB

编辑:叮咚光军
归档:https://elasticsearch.cn/article/6148
订阅:https://tinyletter.com/elastic-daily 收起阅读 »

腾讯云Elasticsearch团队招聘高级后台开发工程师 base深圳


Elasticsearch相关产品的新功能设计、开发、运营和维护工作;
 跟进研究业界前沿技术,推动产品技术升级。
岗位要求:
编程能力扎实,熟悉Java/C++中的一种,具有良好的数据结构、算法、操作系统等计算机基本知识;
 熟悉ElasticSearch/Lucene开源系统,有实际开发经验者优先;
 熟悉Hadoop、HBase、InfluxDB等开源系统,有云计算相关开发经验者优先;
 具有敏捷开发、完整产品生命周期开发者优先;
 学习能力强,善于独立思考,思维活跃,对技术有强烈激情。
 
请发简历至:360608805@qq.com
 
继续阅读 »

Elasticsearch相关产品的新功能设计、开发、运营和维护工作;
 跟进研究业界前沿技术,推动产品技术升级。
岗位要求:
编程能力扎实,熟悉Java/C++中的一种,具有良好的数据结构、算法、操作系统等计算机基本知识;
 熟悉ElasticSearch/Lucene开源系统,有实际开发经验者优先;
 熟悉Hadoop、HBase、InfluxDB等开源系统,有云计算相关开发经验者优先;
 具有敏捷开发、完整产品生命周期开发者优先;
 学习能力强,善于独立思考,思维活跃,对技术有强烈激情。
 
请发简历至:360608805@qq.com
  收起阅读 »

社区日报 第453期 (2018-11-19)

1. 使用elasticsearch来分析北京租房数据
http://t.cn/E2aQmeA
2. 如何租到靠谱的房子?Scrapy爬虫帮你一网打尽各平台租房信息!
http://t.cn/E2a8AoX
3. 理解elasticsearch的parent-child关系
http://t.cn/E2a89kd

编辑:cyberdak
归档:https://elasticsearch.cn/article/6146
订阅:https://tinyletter.com/elastic-daily
继续阅读 »
1. 使用elasticsearch来分析北京租房数据
http://t.cn/E2aQmeA
2. 如何租到靠谱的房子?Scrapy爬虫帮你一网打尽各平台租房信息!
http://t.cn/E2a8AoX
3. 理解elasticsearch的parent-child关系
http://t.cn/E2a89kd

编辑:cyberdak
归档:https://elasticsearch.cn/article/6146
订阅:https://tinyletter.com/elastic-daily 收起阅读 »

海量科技股份有限公司ES中文插件

海量分词是天津海量信息技术股份有限公司自主研发的中文分词核心,已于2018年7月将分词5.0版免费开放,欢迎试用。
 
海量分词演示界面 http://www.hailiangxinxi.com/smartCenter2018/index

另外,海量提供免费API接口,文档详见http://www.hailiangxinxi.com/smartCenter2018/doc,欢迎大家试用,如有疑问,请联系nlp@hylanda.com

Analyzer: hlseg_search , hlseg_large , hlseg_normal, Tokenizer: hlseg_search , hlseg_large , hlseg_normal
 
github地址:https://github.com/HylandaOpen ... ME.md
继续阅读 »
海量分词是天津海量信息技术股份有限公司自主研发的中文分词核心,已于2018年7月将分词5.0版免费开放,欢迎试用。
 
海量分词演示界面 http://www.hailiangxinxi.com/smartCenter2018/index

另外,海量提供免费API接口,文档详见http://www.hailiangxinxi.com/smartCenter2018/doc,欢迎大家试用,如有疑问,请联系nlp@hylanda.com

Analyzer: hlseg_search , hlseg_large , hlseg_normal, Tokenizer: hlseg_search , hlseg_large , hlseg_normal
 
github地址:https://github.com/HylandaOpen ... ME.md 收起阅读 »

ET007 ElasticStack 6.5 介绍

就在 11月14日,ElasticStack 6.5.0 发布了,此次发布带来了许多激动人心的特性,我们一起来体验一下:

WX20181118-120551@2x

如果没有任何数据,kibana会提示我们导入sample数据,这边我选择Try our sample data, 然后导入全部3个样例数据,这可以让我们在没有数据的情况下快速体验新特性。

Infrastructure & Logs UI

很多用户使用 ElasticStack 收集基础架构的日志和指标,比如系统日志、安全日志、CPU指标,内存指标等等。在6.5中,kibana 侧边栏中增加了 Infrastructure 和 Logs 两个新的 tab,让用户更简单地查看自己的基础架构,和每台主机或者容器里的日志。

logs

进入logs标签页,如果当前没有数据,kibana会引导我们添加数据

WX20181118-121032@2x

我们选择 system logs

WX20181118-121047@2x

根据指示,我们安装部署好filebeat并启动,再次进入 logs 标签页便可以看到收集到的系统日志了

image-20181118185158451

  1. 搜索过滤框:在这里可以像在 discover 里一样写query string,并且会有输入提示
  2. 时间选择框:可以选择需要查看的时间点,如果点了 Stream live,会持续监听尾部新输出的日志内容,类似 linux 命令中的tail -f
  3. 日志时间轴:高亮的部位是当前查看日志所在的时间范围,对应的区域图标识了日志量

假如我想实现 tail -f /var/log/system.log | grep google.com 一样的效果,可以打开 Stream live,并在搜索过滤框中这样输入:

WX20181118-173432@2x

很简单,很方便有木有?

Infrastructure

同样在kibana的引导下安装 Metric beat,并开启system模块,启动后进入 infrastructure 标签页:

image-20181118190614385

这里可以直观地看到所有基础架构的指标状况,深色的内层代表主机,颜色代表了健康状况。浅灰色的外层代表了group,因为我只在自己的笔记本上做了部署,所以只能看到一个host。

image-20181118191527060

点击主机会弹出菜单

  • View logs : 跳转到 logs 标签页,并通过搜索过滤框指定host,只查看这台主机的日志。
  • View metrics : 跳转到这台主机的指标详情,可以查看历史数据 shoot

APM

Java 和 Go

不负众望,继 Nodejs、Python、Ruby、Javascript 之后,Elastic APM 5.6.0 新增了对 Java 和 Golang 的支持!

Distributed Tracing

在 SOA 和 MSA 大行其道的年代,如何追踪请求在各个系统之间的流动成为了apm的关键问题。

Elastic APM 支持 OpenTracing 标准,并在各个agent里内置了 OpenTracing 兼容的bridge

以下是官网上该特性的截图:

distributed_tracing

APM Server 监控

如 ElasticStack的其他产品一般,APM也支持了监控,并可以在 Kinbana Montoring下查看监控信息:

apm_monitoring

APM Server 内存占用优化

通过新的基于NDJSON的协议,agent可以在采集信息后通过事件流立即发往APM server,这样 APM Server可以一个接一个地处理接收到的事件,而不是一次性地收到一大块(chunk),这样在很大程度上减少了APM Server的内存占用。

Elasticsearch

Cross-cluster replication

这里的副本并非我们平时常见的分片副本,而是通过在集群B配置一个副本indexB来追随集群A中的indexA,indexA中发生的任何变化都会同步到indexB中来。另外也可以配置一个pattern,当集群A出现符合pattern的索引,自动在集群B创建他的副本,这听起来很酷。值得一提的是,这将是白金版里新增的一个特性。

Minimal Snapshots

snapshot 是 es 中用来创建索引副本的特性,在之前的版本中,snapshot会把完整的 index 都保存下来,包括原始数据和索引数据等等。新的 Minimal Snapshots 提供了一种只备份 _source 内容和 index metadata,当需要恢复时,需要通过 reindex 操作来完成。最小快照最多可能帮你节省50%的磁盘占用,但是会花费更多的时间来恢复。这个特性可能并不适合所有人,但给恢复窗口比较长,且磁盘容量有限的用户多了一种选择。

SQL / ODBC

现在可以使用 支持 ODBC 的第三方工具来连接 elasticsearch 了!我想可以找时间试试用 tableau 直连 elasticsearch会是啥效果。

Java 11

Java11 是一个 LTS 版本,相信会有越来越多的用户升级到 java11

G1GC支持

经过无数的测试,Elasticsearch官方宣布了在 JDK 10+ 上支持 G1GC。G1GC 相比 CMS有诸多优势,如今可以放心地使用G1GC了。(期待对ZGC的支持!)

Authorization realm

X-Pack Security中的新特性,可以对用户认证和用户授权分别配置 realm,比如使用内置的用户体系来认证,再去ldap中获取用户的角色、权限等信息。这也是白金版新增的特性。

机器学习的新特性

  • 支持在同一个机器学习任务中分析多个时间系列
  • 为机器学习任务添加了新的多分桶(multi-bucket) 分析

Kibana

Canvas

Canvas ! 我在做数据分析师的同学看到之后说太酷了,像 PPT。

点击侧边栏的 canvas 标签,可以看到我们先前导入的样本数据也包含了 canvas 样例:

WX20181118-210126@2x

在 11月的 深圳开发者大会上,上海普翔 也用 canvas 对填写调查问卷的参会人员做了分析:

UNADJUSTEDNONRAW_thumb_1adc

https://github.com/alexfrancoeur/kibana_canvas_examples 这里有很多非常不错的 canvas 样例供大家学习,把json文件直接拖到 canvas 页面就可以导入学习了!

Spaces

把 kibana 对象(比如 visualizations、dashboards)组织到独立的 space 里,并且通过 RBAC 来控制哪些用户可以访问哪些 space。这实在是太棒了,想象在一个企业里,多个部门通过kibana查询、分析数据,大家关注的dashboard肯定是不一样的,在6.5之前,我们只能通过社区插件来实现这样的需求,而大版本的升级可能直接导致插件不可用,有了 Space,我们不必再担心!

image-20181118212404768

Rollups UI

Rollup 是 es6.4 中新增的一个特性,用来把一些历史数据压缩归档,用作以后的分析。6.5.0 中 kibana 增加了一个界面用来查看和管理 Rollup 任务。

image9

Data visualizer for files

通过可视化的方式查看文件的结构,查看其中出现最频繁的内容:

highlights_6_5_viz-logs

Beats

Beats Central Management

Beats 终于也支持中心化配置管理了!我们只需按照往常一样安装filebeat、metricbeat,然后使用 filebeat enroll <kibana-url> <token>,便可以通过kibana来管理beats的配置、甚至给他们打上tag:

Image from iOS

想一想,假如我们在上千台机器上部署filebeat,如果哪天需要批量变更配置文件,只需要通过脚本调用配置管理的API就可以了

Functionbeat

Functionbeat是一种新的beat类型,可以被部署为一个方法,而不需要跑在服务器环境上,比如 AWS Lambda function。

以上就是 6.5.0 版本的主要特性,更详细的内容可以查看 https://www.elastic.co/blog/elastic-stack-6-5-0-released ,希望通过我的介绍,可以让大家了解到新版本所带来的激动人心的特性。

Image from iOS

继续阅读 »

就在 11月14日,ElasticStack 6.5.0 发布了,此次发布带来了许多激动人心的特性,我们一起来体验一下:

WX20181118-120551@2x

如果没有任何数据,kibana会提示我们导入sample数据,这边我选择Try our sample data, 然后导入全部3个样例数据,这可以让我们在没有数据的情况下快速体验新特性。

Infrastructure & Logs UI

很多用户使用 ElasticStack 收集基础架构的日志和指标,比如系统日志、安全日志、CPU指标,内存指标等等。在6.5中,kibana 侧边栏中增加了 Infrastructure 和 Logs 两个新的 tab,让用户更简单地查看自己的基础架构,和每台主机或者容器里的日志。

logs

进入logs标签页,如果当前没有数据,kibana会引导我们添加数据

WX20181118-121032@2x

我们选择 system logs

WX20181118-121047@2x

根据指示,我们安装部署好filebeat并启动,再次进入 logs 标签页便可以看到收集到的系统日志了

image-20181118185158451

  1. 搜索过滤框:在这里可以像在 discover 里一样写query string,并且会有输入提示
  2. 时间选择框:可以选择需要查看的时间点,如果点了 Stream live,会持续监听尾部新输出的日志内容,类似 linux 命令中的tail -f
  3. 日志时间轴:高亮的部位是当前查看日志所在的时间范围,对应的区域图标识了日志量

假如我想实现 tail -f /var/log/system.log | grep google.com 一样的效果,可以打开 Stream live,并在搜索过滤框中这样输入:

WX20181118-173432@2x

很简单,很方便有木有?

Infrastructure

同样在kibana的引导下安装 Metric beat,并开启system模块,启动后进入 infrastructure 标签页:

image-20181118190614385

这里可以直观地看到所有基础架构的指标状况,深色的内层代表主机,颜色代表了健康状况。浅灰色的外层代表了group,因为我只在自己的笔记本上做了部署,所以只能看到一个host。

image-20181118191527060

点击主机会弹出菜单

  • View logs : 跳转到 logs 标签页,并通过搜索过滤框指定host,只查看这台主机的日志。
  • View metrics : 跳转到这台主机的指标详情,可以查看历史数据 shoot

APM

Java 和 Go

不负众望,继 Nodejs、Python、Ruby、Javascript 之后,Elastic APM 5.6.0 新增了对 Java 和 Golang 的支持!

Distributed Tracing

在 SOA 和 MSA 大行其道的年代,如何追踪请求在各个系统之间的流动成为了apm的关键问题。

Elastic APM 支持 OpenTracing 标准,并在各个agent里内置了 OpenTracing 兼容的bridge

以下是官网上该特性的截图:

distributed_tracing

APM Server 监控

如 ElasticStack的其他产品一般,APM也支持了监控,并可以在 Kinbana Montoring下查看监控信息:

apm_monitoring

APM Server 内存占用优化

通过新的基于NDJSON的协议,agent可以在采集信息后通过事件流立即发往APM server,这样 APM Server可以一个接一个地处理接收到的事件,而不是一次性地收到一大块(chunk),这样在很大程度上减少了APM Server的内存占用。

Elasticsearch

Cross-cluster replication

这里的副本并非我们平时常见的分片副本,而是通过在集群B配置一个副本indexB来追随集群A中的indexA,indexA中发生的任何变化都会同步到indexB中来。另外也可以配置一个pattern,当集群A出现符合pattern的索引,自动在集群B创建他的副本,这听起来很酷。值得一提的是,这将是白金版里新增的一个特性。

Minimal Snapshots

snapshot 是 es 中用来创建索引副本的特性,在之前的版本中,snapshot会把完整的 index 都保存下来,包括原始数据和索引数据等等。新的 Minimal Snapshots 提供了一种只备份 _source 内容和 index metadata,当需要恢复时,需要通过 reindex 操作来完成。最小快照最多可能帮你节省50%的磁盘占用,但是会花费更多的时间来恢复。这个特性可能并不适合所有人,但给恢复窗口比较长,且磁盘容量有限的用户多了一种选择。

SQL / ODBC

现在可以使用 支持 ODBC 的第三方工具来连接 elasticsearch 了!我想可以找时间试试用 tableau 直连 elasticsearch会是啥效果。

Java 11

Java11 是一个 LTS 版本,相信会有越来越多的用户升级到 java11

G1GC支持

经过无数的测试,Elasticsearch官方宣布了在 JDK 10+ 上支持 G1GC。G1GC 相比 CMS有诸多优势,如今可以放心地使用G1GC了。(期待对ZGC的支持!)

Authorization realm

X-Pack Security中的新特性,可以对用户认证和用户授权分别配置 realm,比如使用内置的用户体系来认证,再去ldap中获取用户的角色、权限等信息。这也是白金版新增的特性。

机器学习的新特性

  • 支持在同一个机器学习任务中分析多个时间系列
  • 为机器学习任务添加了新的多分桶(multi-bucket) 分析

Kibana

Canvas

Canvas ! 我在做数据分析师的同学看到之后说太酷了,像 PPT。

点击侧边栏的 canvas 标签,可以看到我们先前导入的样本数据也包含了 canvas 样例:

WX20181118-210126@2x

在 11月的 深圳开发者大会上,上海普翔 也用 canvas 对填写调查问卷的参会人员做了分析:

UNADJUSTEDNONRAW_thumb_1adc

https://github.com/alexfrancoeur/kibana_canvas_examples 这里有很多非常不错的 canvas 样例供大家学习,把json文件直接拖到 canvas 页面就可以导入学习了!

Spaces

把 kibana 对象(比如 visualizations、dashboards)组织到独立的 space 里,并且通过 RBAC 来控制哪些用户可以访问哪些 space。这实在是太棒了,想象在一个企业里,多个部门通过kibana查询、分析数据,大家关注的dashboard肯定是不一样的,在6.5之前,我们只能通过社区插件来实现这样的需求,而大版本的升级可能直接导致插件不可用,有了 Space,我们不必再担心!

image-20181118212404768

Rollups UI

Rollup 是 es6.4 中新增的一个特性,用来把一些历史数据压缩归档,用作以后的分析。6.5.0 中 kibana 增加了一个界面用来查看和管理 Rollup 任务。

image9

Data visualizer for files

通过可视化的方式查看文件的结构,查看其中出现最频繁的内容:

highlights_6_5_viz-logs

Beats

Beats Central Management

Beats 终于也支持中心化配置管理了!我们只需按照往常一样安装filebeat、metricbeat,然后使用 filebeat enroll <kibana-url> <token>,便可以通过kibana来管理beats的配置、甚至给他们打上tag:

Image from iOS

想一想,假如我们在上千台机器上部署filebeat,如果哪天需要批量变更配置文件,只需要通过脚本调用配置管理的API就可以了

Functionbeat

Functionbeat是一种新的beat类型,可以被部署为一个方法,而不需要跑在服务器环境上,比如 AWS Lambda function。

以上就是 6.5.0 版本的主要特性,更详细的内容可以查看 https://www.elastic.co/blog/elastic-stack-6-5-0-released ,希望通过我的介绍,可以让大家了解到新版本所带来的激动人心的特性。

Image from iOS

收起阅读 »

社区日报 第452期 (2018-11-18)

1.ElasticSearch嵌套搜索:如何搜索嵌入的文档。
http://t.cn/E2tAGhG
2.Spark ElasticSearch Hadoop更新和Upsert示例和说明。
http://t.cn/E2t2yg2
3.(自备梯子)我的数据科学恐怖故事。
http://t.cn/E2t2FrI

编辑:至尊宝
归档:https://elasticsearch.cn/article/6143
订阅:https://tinyletter.com/elastic-daily
继续阅读 »
1.ElasticSearch嵌套搜索:如何搜索嵌入的文档。
http://t.cn/E2tAGhG
2.Spark ElasticSearch Hadoop更新和Upsert示例和说明。
http://t.cn/E2t2yg2
3.(自备梯子)我的数据科学恐怖故事。
http://t.cn/E2t2FrI

编辑:至尊宝
归档:https://elasticsearch.cn/article/6143
订阅:https://tinyletter.com/elastic-daily 收起阅读 »

ELK 使用小技巧(第 2 期)

ELK Tips 主要介绍一些 ELK 使用过程中的小技巧,内容主要来源为 Elastic 中文社区。

一、Logstash

1、Filebeat :Non-zero metrics in the last 30s

  • 问题表现:Filebeat 无法向 Elasticsearch 发送日志数据;
  • 错误信息:INFO [monitoring] 1og/log.go:124 Non-zero metrics in the last 30s
  • 社区反馈:在 input 和 output 下面添加属性 enabled:true。
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/*.log

output.elasticsearch:
  hosts: ["https://localhost:9200"]
  username: "filebeat_internal"
  password: "YOUR_PASSWORD"
  enabled: true

input 和 output 下 enabled 属性默认值为 true,因此怀疑另有其因。

2、Logstash 按月生成索引

output {
    if [type] == "typeA"{
        elasticsearch {
            hosts  => "127.0.0.1:9200"
            index => "log_%{+YYYY_MM}"
        }
    }
}

按照日的原理类似:%{+YYYY.MM.dd}

3、Filebeat 通过配置删除特定字段

Filebeat 实现了类似 Logstash 中 filter 的功能,叫做处理器(processors),processors 种类不多,尽可能在保持 Filebeat 轻量化的基础上提供更多常用的功能。

下面列几种常用的 processors:

  • add_cloud_metadata:添加云服务器的 meta 信息;
  • add_locale:添加本地时区;
  • decode_json_fields:解析并处理包含 Json 字符串的字段;
  • drop_event:丢弃符合条件的消息事件;
  • drop_fields:删除符合条件的字段;
  • include_fields:选择符合条件的字段;
  • rename:字段重命名;
  • add_kubernetes_metadata:添加 k8s 的 meta 信息;
  • add_docker_metadata:添加容器的 meta 信息;
  • add_host_metadata:添加操作系统的 meta 信息;
  • dissect:类似与 gork 的正则匹配字段的功能;
  • dns:配置 filebeat 独立的 dns 解析方式;
  • add_process_metadata:添加进程的元信息。

processors 的使用方式:

- type: <input_type>
  processors:
  - <processor_name>:
      when:
        <condition>
      <parameters>
...

4、LogStash 采集 FTP 日志文件

exec {
    codec => plain { }
    command => "curl ftp://server/logs.log"
    interval => 3000}
}

5、Logstash docker-compose 启动失败(Permission denied)

在 docker-compose 中使用 user 选项设置使用 root 用户启动 docker,能解决权限问题。

$ cat docker-compose.yml

version: '2'
services:
  logstash:
    image: docker.elastic.co/logstash/logstash:6.4.2
    user: root
    command: id

6、Metricize filter plugin

将一条消息拆分为多条消息。

# 原始信息
{
    type => "type A"
    metric1 => "value1"
    metric2 => "value2"
}

# 配置信息
filter {
  metricize {
    metrics => [ "metric1", "metric2" ]
  }
}

# 最终输出
{                               {
    type => "type A"                type => "type A"
    metric => "metric1"             metric => "metric2"
    value => "value1"               value => "value2"
}                               }

二、Elasticsearch

1、ES 倒排索引内部结构

Lucene 的倒排索引都是按照字段(field)来存储对应的文档信息的,如果 docName 和 docContent 中有“苹果”这个 term,就会有这两个索引链,如下所示:

docName:
"苹果" -> "doc1, doc2, doc3..."

docContent:
"苹果" -> "doc2, doc4, doc6..."

2、Jest 和 RestHighLevelClient 哪个好用点

RestHighLevelClient 是官方组件,会一直得到官方的支持,且会与 ES 保持同步更新,推荐使用官方的高阶 API。

Jest 由于是社区维护,所以更新会有一定延迟,目前最新版对接 ES6.3.1,近一个月只有四个 issue,说明整体活跃度较低,因此不推荐使用。

此外推荐一份 TransportClient 的中文使用手册,翻译的很不错:https://github.com/jackiehff/elasticsearch-client-java-api-cn

3、ES 单分片使用 From/Size 分页遇到重复数据

常规情况下 ES 单分片使用 From/Size 是不会遇到数据重复的,数据重复的可能原因有:

  • 没有添加排序;
  • 添加了按得分排序,但是查询语句全部为 filter 过滤条件(此时得分都一致);
  • 添加了排序,但是有索引中文档的新增、修改、删除等操作。

对于多分片,推荐添加 preference 参数来实现分页结果的一致性。

4、The number of object passed must be even but was [1]

ES 在调用 setSource 的时候传入 Json 对象后会报错:The number of object passed must be even but was [1],此时可以推荐将 Json 对象转为 Map 集合,或者把 Json 对象转为 json 字符串,不过传入字符串的时候需要设置类型。

IndexRequest indexRequest = new IndexRequest("index", "type", "id");
JSONObject doc = new JSONObject();
//indexRequest.source(jsonObject); 错误的使用方法
//转为 Map 对象
indexRequest.source(JSONObject.parseObject((String) doc.get("json"), Map.class));
//转为 Json 字符串(声明字符串类型)
indexRequest.source(JSON.toJSONString(doc), XContentType.JSON);

5、跨集群搜索

ES 6.X 原生支持跨集群搜索,具体配置请参考:https://www.elastic.co/guide/en/kibana/current/management-cross-cluster-search.html

PUT _cluster/settings
{
  "persistent": {
    "cluster": {
      "remote": {
        "cluster_one": {
          "seeds": [
            "127.0.0.1:9300"
          ]
        },
        "cluster_two": {
          "seeds": [
            "127.0.0.1:9301"
          ]
        },
        "cluster_three": {
          "seeds": [
            "127.0.0.1:9302"
          ]
        }
      }
    }
  }
}

ES 6.5 推出了新功能,跨集群同步(Cross-cluster replication),感兴趣的可以自行了解。

6、ES 排序时设置空值排序位置

GET /_search
{
    "sort" : [
        { "price" : {"missing" : "_last"} }
    ],
    "query" : {
        "term" : { "product" : "chocolate" }
    }
}

7、ES 冷归档数据如何处理

使用相对低配的大磁盘机器配置为 ES 的 Warm Nodes,可以通过 index.routing.allocation.require.box_type 来设置索引是冷数据或者热数据。如果索引极少使用,可以 close 索引,然后在需要搜索的时候 open 即可。

8、ES 相似文章检测

对于大文本的去重,可以参考 SimHash 算法,通过 SimHash 可以提取到文档指纹(64位),两篇文章通过 SimHash 计算海明距离即可判断是否重复。海明距离计算,可以通过插件实现:https://github.com/joway/elasticsearch-hamming-plugin

9、Terms 聚合查询优化

  • 如果只需要聚合后前 N 条记录,推荐在 Terms 聚合时添加上 "collect_mode": "breadth_first"
  • 此外可以通过设置 "min_doc_count": 10来限制最小匹配文档数;
  • 如果对返回的 Term 有所要求,可以通过设置 includeexclude 来过滤 Term;
  • 如果想获取全部 Term 聚合结果,但是聚合结果又很多,可以考虑将聚合分成多个批次分别取回(Filtering Values with partitions)。

10、Tomcat 字符集造成的 ES 查询无结果

两个系统连接同一个 ES 服务,配置和代码完全一致,同一个搜索条件,一个能够搜索出来东西,一个什么都搜索不出来,排查结果是因为其中一个系统的 tomcat 配置有问题,导致请求的时候乱码了,所以搜不到数据。

11、ES 索引设置默认分词器

默认情况下,如果字段不指定分词器,ES 或使用 standard 分词器进行分词;可以通过下面的设置更改默认的分词器。

2.X 支持设置默认的索引分词器(default_index)和默认的查询分词器(default_search),6.X 已经不再支持。

PUT /index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "default": {
          "type": "ik_max_word",
          "tokenizer": "ik_max_word"
        }
      }
    }
  }
}

12、ES 中的魔法参数

  • 索引名:_index
  • 类型名:_type
  • 文档Id:_id
  • 得分:_score
  • 索引排序:_doc

如果你对排序没有特别的需求,推荐使用 _doc 进行排序,例如执行 Scroll 操作时。

13、ES 延迟执行数据上卷(Rollup )

Rollup job 有个 delay 参数控制 job 执行的延迟时间,默认情况下不延迟执行,这样如果某个 interval 的数据已经聚合好了,该 interval 迟到的数据是不会处理的。

好在 rollup api 可以支持同时搜索裸索引和 rollup 过的索引,所以如果数据经常有延迟的话,可以考虑设置一个合适的 delay,比如 1h、6h 甚至 24h,这样 rollup 的索引产生会有延迟,但是能确保迟到的数据被处理。

从应用场景上看,rollup 一般是为了对历史数据做聚合存放,减少存储空间,所以延迟几个小时,甚至几天都是合理的。搜索的时候,同时搜索最近的裸索引和历史的 rollup 索引,就能将两者的数据组合起来,在给出正确的聚合结果的情况下,又兼顾了性能。

Rollup 是实验性功能,不过非常有用,特别是使用 ES 做数据仓库的场景。

14、ES6.x 获取所有的聚合结果

ES2.x 版本中,在聚合查询时,通过设置 setSize(0) 就可以获取所有的聚合结果,在ES6.x 中直接设置 setSize(Integer.MAX_VALUE) 等效于 2.x 中设置为 0。

15、ES Jar 包冲突问题

经常会遇到 ES 与业务集成时出现 Jar 包冲突问题,推荐的解决方法是使用 maven-shade-plugin 插件,该插件通过将冲突的 Jar 包更换一个命名空间的方式来解决 Jar 包的冲突问题,具体使用可以参考文章:https://www.jianshu.com/p/d9fb7afa634d

<plugins>
    <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-shade-plugin</artifactId>
        <version>2.4.1</version>
        <configuration>
            <createDependencyReducedPom>false</createDependencyReducedPom>
        </configuration>
        <executions>
            <execution>
                <phase>package</phase>
                <goals>
                    <goal>shade</goal>
                </goals>
                <configuration>
                    <relocations>
                        <relocation>
                            <pattern>com.google.guava</pattern>
                            <shadedPattern>net.luculent.elasticsearch.guava</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>com.fasterxml.jackson</pattern>
                            <shadedPattern>net.luculent.elasticsearch.jackson</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>org.joda</pattern>
                            <shadedPattern>net.luculent.elasticsearch.joda</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>com.google.common</pattern>
                            <shadedPattern>net.luculent.elasticsearch.common</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>com.google.thirdparty</pattern>
                            <shadedPattern>net.luculent.elasticsearch.thirdparty</shadedPattern>
                        </relocation>
                    </relocations>
                    <transformers>
                        <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer" />
                        <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                    </transformers>
                </configuration>
            </execution>
        </executions>
    </plugin>
</plugins>

16、ES 如何选择 Shard 存储文档?

ES 采用 djb2 哈希算法对要索引文档的指定(或者默认随机生成的)_id 进行哈希,得到哈希结果后对索引 shard 数目 n 取模,公式如下:hash(_id) % n;根据取模结果决定存储到哪一个 shard 。

三、Kibana

1、在 Kiabana 的 Discovery 界面显示自定义字段

Kibana 的 Discovery 界面默认只显示 time 和 _source 两个字段,这个界面的左半部分,在 Popular 下面展示了很多,你只需要在你需要展示的字段后面点击 add 即可将自定义的字段添加到 discovery 界面。

在 Kiabana 的 Discovery 界面显示自定义字段

2、filebeat 的 monitor 指标的说明

  • Total:'All events newly created in the publishing pipeline'
  • Emitted: 'Events processed by the output (including retries)'
  • Acknowledged:'Events acknowledged by the output (includes events dropped by the output)'
  • Queued:'Events added to the event pipeline queue'

四、社区文章精选


Any Code,Code Any!

扫码关注『AnyCode』,编程路上,一起前行。

继续阅读 »

ELK Tips 主要介绍一些 ELK 使用过程中的小技巧,内容主要来源为 Elastic 中文社区。

一、Logstash

1、Filebeat :Non-zero metrics in the last 30s

  • 问题表现:Filebeat 无法向 Elasticsearch 发送日志数据;
  • 错误信息:INFO [monitoring] 1og/log.go:124 Non-zero metrics in the last 30s
  • 社区反馈:在 input 和 output 下面添加属性 enabled:true。
filebeat.inputs:
- type: log
  enabled: true
  paths:
    - /var/log/*.log

output.elasticsearch:
  hosts: ["https://localhost:9200"]
  username: "filebeat_internal"
  password: "YOUR_PASSWORD"
  enabled: true

input 和 output 下 enabled 属性默认值为 true,因此怀疑另有其因。

2、Logstash 按月生成索引

output {
    if [type] == "typeA"{
        elasticsearch {
            hosts  => "127.0.0.1:9200"
            index => "log_%{+YYYY_MM}"
        }
    }
}

按照日的原理类似:%{+YYYY.MM.dd}

3、Filebeat 通过配置删除特定字段

Filebeat 实现了类似 Logstash 中 filter 的功能,叫做处理器(processors),processors 种类不多,尽可能在保持 Filebeat 轻量化的基础上提供更多常用的功能。

下面列几种常用的 processors:

  • add_cloud_metadata:添加云服务器的 meta 信息;
  • add_locale:添加本地时区;
  • decode_json_fields:解析并处理包含 Json 字符串的字段;
  • drop_event:丢弃符合条件的消息事件;
  • drop_fields:删除符合条件的字段;
  • include_fields:选择符合条件的字段;
  • rename:字段重命名;
  • add_kubernetes_metadata:添加 k8s 的 meta 信息;
  • add_docker_metadata:添加容器的 meta 信息;
  • add_host_metadata:添加操作系统的 meta 信息;
  • dissect:类似与 gork 的正则匹配字段的功能;
  • dns:配置 filebeat 独立的 dns 解析方式;
  • add_process_metadata:添加进程的元信息。

processors 的使用方式:

- type: <input_type>
  processors:
  - <processor_name>:
      when:
        <condition>
      <parameters>
...

4、LogStash 采集 FTP 日志文件

exec {
    codec => plain { }
    command => "curl ftp://server/logs.log"
    interval => 3000}
}

5、Logstash docker-compose 启动失败(Permission denied)

在 docker-compose 中使用 user 选项设置使用 root 用户启动 docker,能解决权限问题。

$ cat docker-compose.yml

version: '2'
services:
  logstash:
    image: docker.elastic.co/logstash/logstash:6.4.2
    user: root
    command: id

6、Metricize filter plugin

将一条消息拆分为多条消息。

# 原始信息
{
    type => "type A"
    metric1 => "value1"
    metric2 => "value2"
}

# 配置信息
filter {
  metricize {
    metrics => [ "metric1", "metric2" ]
  }
}

# 最终输出
{                               {
    type => "type A"                type => "type A"
    metric => "metric1"             metric => "metric2"
    value => "value1"               value => "value2"
}                               }

二、Elasticsearch

1、ES 倒排索引内部结构

Lucene 的倒排索引都是按照字段(field)来存储对应的文档信息的,如果 docName 和 docContent 中有“苹果”这个 term,就会有这两个索引链,如下所示:

docName:
"苹果" -> "doc1, doc2, doc3..."

docContent:
"苹果" -> "doc2, doc4, doc6..."

2、Jest 和 RestHighLevelClient 哪个好用点

RestHighLevelClient 是官方组件,会一直得到官方的支持,且会与 ES 保持同步更新,推荐使用官方的高阶 API。

Jest 由于是社区维护,所以更新会有一定延迟,目前最新版对接 ES6.3.1,近一个月只有四个 issue,说明整体活跃度较低,因此不推荐使用。

此外推荐一份 TransportClient 的中文使用手册,翻译的很不错:https://github.com/jackiehff/elasticsearch-client-java-api-cn

3、ES 单分片使用 From/Size 分页遇到重复数据

常规情况下 ES 单分片使用 From/Size 是不会遇到数据重复的,数据重复的可能原因有:

  • 没有添加排序;
  • 添加了按得分排序,但是查询语句全部为 filter 过滤条件(此时得分都一致);
  • 添加了排序,但是有索引中文档的新增、修改、删除等操作。

对于多分片,推荐添加 preference 参数来实现分页结果的一致性。

4、The number of object passed must be even but was [1]

ES 在调用 setSource 的时候传入 Json 对象后会报错:The number of object passed must be even but was [1],此时可以推荐将 Json 对象转为 Map 集合,或者把 Json 对象转为 json 字符串,不过传入字符串的时候需要设置类型。

IndexRequest indexRequest = new IndexRequest("index", "type", "id");
JSONObject doc = new JSONObject();
//indexRequest.source(jsonObject); 错误的使用方法
//转为 Map 对象
indexRequest.source(JSONObject.parseObject((String) doc.get("json"), Map.class));
//转为 Json 字符串(声明字符串类型)
indexRequest.source(JSON.toJSONString(doc), XContentType.JSON);

5、跨集群搜索

ES 6.X 原生支持跨集群搜索,具体配置请参考:https://www.elastic.co/guide/en/kibana/current/management-cross-cluster-search.html

PUT _cluster/settings
{
  "persistent": {
    "cluster": {
      "remote": {
        "cluster_one": {
          "seeds": [
            "127.0.0.1:9300"
          ]
        },
        "cluster_two": {
          "seeds": [
            "127.0.0.1:9301"
          ]
        },
        "cluster_three": {
          "seeds": [
            "127.0.0.1:9302"
          ]
        }
      }
    }
  }
}

ES 6.5 推出了新功能,跨集群同步(Cross-cluster replication),感兴趣的可以自行了解。

6、ES 排序时设置空值排序位置

GET /_search
{
    "sort" : [
        { "price" : {"missing" : "_last"} }
    ],
    "query" : {
        "term" : { "product" : "chocolate" }
    }
}

7、ES 冷归档数据如何处理

使用相对低配的大磁盘机器配置为 ES 的 Warm Nodes,可以通过 index.routing.allocation.require.box_type 来设置索引是冷数据或者热数据。如果索引极少使用,可以 close 索引,然后在需要搜索的时候 open 即可。

8、ES 相似文章检测

对于大文本的去重,可以参考 SimHash 算法,通过 SimHash 可以提取到文档指纹(64位),两篇文章通过 SimHash 计算海明距离即可判断是否重复。海明距离计算,可以通过插件实现:https://github.com/joway/elasticsearch-hamming-plugin

9、Terms 聚合查询优化

  • 如果只需要聚合后前 N 条记录,推荐在 Terms 聚合时添加上 "collect_mode": "breadth_first"
  • 此外可以通过设置 "min_doc_count": 10来限制最小匹配文档数;
  • 如果对返回的 Term 有所要求,可以通过设置 includeexclude 来过滤 Term;
  • 如果想获取全部 Term 聚合结果,但是聚合结果又很多,可以考虑将聚合分成多个批次分别取回(Filtering Values with partitions)。

10、Tomcat 字符集造成的 ES 查询无结果

两个系统连接同一个 ES 服务,配置和代码完全一致,同一个搜索条件,一个能够搜索出来东西,一个什么都搜索不出来,排查结果是因为其中一个系统的 tomcat 配置有问题,导致请求的时候乱码了,所以搜不到数据。

11、ES 索引设置默认分词器

默认情况下,如果字段不指定分词器,ES 或使用 standard 分词器进行分词;可以通过下面的设置更改默认的分词器。

2.X 支持设置默认的索引分词器(default_index)和默认的查询分词器(default_search),6.X 已经不再支持。

PUT /index
{
  "settings": {
    "analysis": {
      "analyzer": {
        "default": {
          "type": "ik_max_word",
          "tokenizer": "ik_max_word"
        }
      }
    }
  }
}

12、ES 中的魔法参数

  • 索引名:_index
  • 类型名:_type
  • 文档Id:_id
  • 得分:_score
  • 索引排序:_doc

如果你对排序没有特别的需求,推荐使用 _doc 进行排序,例如执行 Scroll 操作时。

13、ES 延迟执行数据上卷(Rollup )

Rollup job 有个 delay 参数控制 job 执行的延迟时间,默认情况下不延迟执行,这样如果某个 interval 的数据已经聚合好了,该 interval 迟到的数据是不会处理的。

好在 rollup api 可以支持同时搜索裸索引和 rollup 过的索引,所以如果数据经常有延迟的话,可以考虑设置一个合适的 delay,比如 1h、6h 甚至 24h,这样 rollup 的索引产生会有延迟,但是能确保迟到的数据被处理。

从应用场景上看,rollup 一般是为了对历史数据做聚合存放,减少存储空间,所以延迟几个小时,甚至几天都是合理的。搜索的时候,同时搜索最近的裸索引和历史的 rollup 索引,就能将两者的数据组合起来,在给出正确的聚合结果的情况下,又兼顾了性能。

Rollup 是实验性功能,不过非常有用,特别是使用 ES 做数据仓库的场景。

14、ES6.x 获取所有的聚合结果

ES2.x 版本中,在聚合查询时,通过设置 setSize(0) 就可以获取所有的聚合结果,在ES6.x 中直接设置 setSize(Integer.MAX_VALUE) 等效于 2.x 中设置为 0。

15、ES Jar 包冲突问题

经常会遇到 ES 与业务集成时出现 Jar 包冲突问题,推荐的解决方法是使用 maven-shade-plugin 插件,该插件通过将冲突的 Jar 包更换一个命名空间的方式来解决 Jar 包的冲突问题,具体使用可以参考文章:https://www.jianshu.com/p/d9fb7afa634d

<plugins>
    <plugin>
        <groupId>org.apache.maven.plugins</groupId>
        <artifactId>maven-shade-plugin</artifactId>
        <version>2.4.1</version>
        <configuration>
            <createDependencyReducedPom>false</createDependencyReducedPom>
        </configuration>
        <executions>
            <execution>
                <phase>package</phase>
                <goals>
                    <goal>shade</goal>
                </goals>
                <configuration>
                    <relocations>
                        <relocation>
                            <pattern>com.google.guava</pattern>
                            <shadedPattern>net.luculent.elasticsearch.guava</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>com.fasterxml.jackson</pattern>
                            <shadedPattern>net.luculent.elasticsearch.jackson</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>org.joda</pattern>
                            <shadedPattern>net.luculent.elasticsearch.joda</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>com.google.common</pattern>
                            <shadedPattern>net.luculent.elasticsearch.common</shadedPattern>
                        </relocation>
                        <relocation>
                            <pattern>com.google.thirdparty</pattern>
                            <shadedPattern>net.luculent.elasticsearch.thirdparty</shadedPattern>
                        </relocation>
                    </relocations>
                    <transformers>
                        <transformer implementation="org.apache.maven.plugins.shade.resource.ManifestResourceTransformer" />
                        <transformer implementation="org.apache.maven.plugins.shade.resource.ServicesResourceTransformer"/>
                    </transformers>
                </configuration>
            </execution>
        </executions>
    </plugin>
</plugins>

16、ES 如何选择 Shard 存储文档?

ES 采用 djb2 哈希算法对要索引文档的指定(或者默认随机生成的)_id 进行哈希,得到哈希结果后对索引 shard 数目 n 取模,公式如下:hash(_id) % n;根据取模结果决定存储到哪一个 shard 。

三、Kibana

1、在 Kiabana 的 Discovery 界面显示自定义字段

Kibana 的 Discovery 界面默认只显示 time 和 _source 两个字段,这个界面的左半部分,在 Popular 下面展示了很多,你只需要在你需要展示的字段后面点击 add 即可将自定义的字段添加到 discovery 界面。

在 Kiabana 的 Discovery 界面显示自定义字段

2、filebeat 的 monitor 指标的说明

  • Total:'All events newly created in the publishing pipeline'
  • Emitted: 'Events processed by the output (including retries)'
  • Acknowledged:'Events acknowledged by the output (includes events dropped by the output)'
  • Queued:'Events added to the event pipeline queue'

四、社区文章精选


Any Code,Code Any!

扫码关注『AnyCode』,编程路上,一起前行。

收起阅读 »

一文快速上手Logstash

本文同步发布在腾讯云+社区Elasticsearch专栏:https://cloud.tencent.com/developer/column/4008
Elasticsearch是当前主流的分布式大数据存储和搜索引擎,可以为用户提供强大的全文本检索能力,广泛应用于日志检索,全站搜索等领域。Logstash作为Elasicsearch常用的实时数据采集引擎,可以采集来自不同数据源的数据,并对数据进行处理后输出到多种输出源,是Elastic Stack 的重要组成部分。本文从Logstash的工作原理,使用示例,部署方式及性能调优等方面入手,为大家提供一个快速入门Logstash的方式。文章最后也给出了一些深入了解Logstash的的链接,以方便大家根据需要详细了解。

Logstash简介

1 Logstash工作原理

1.1 处理过程

Logstash处理过程

如上图,Logstash的数据处理过程主要包括:Inputs, Filters, Outputs 三部分, 另外在Inputs和Outputs中可以使用Codecs对数据格式进行处理。这四个部分均以插件形式存在,用户通过定义pipeline配置文件,设置需要使用的input,filter,output, codec插件,以实现特定的数据采集,数据处理,数据输出等功能

  • (1)Inputs:用于从数据源获取数据,常见的插件如file, syslog, redis, beats 等[详细参考]
  • (2)Filters:用于处理数据如格式转换,数据派生等,常见的插件如grok, mutate, drop, clone, geoip等[详细参考]
  • (3)Outputs:用于数据输出,常见的插件如elastcisearch,file, graphite, statsd等[详细参考]
  • (4)Codecs:Codecs不是一个单独的流程,而是在输入和输出等插件中用于数据转换的模块,用于对数据进行编码处理,常见的插件如json,multiline[详细参考]

可以点击每个模块后面的_详细参考_链接了解该模块的插件列表及对应功能

1.2 执行模型:

  • (1)每个Input启动一个线程,从对应数据源获取数据
  • (2)Input会将数据写入一个队列:默认为内存中的有界队列(意外停止会导致数据丢失)。为了防止数丢失Logstash提供了两个特性: Persistent Queues:通过磁盘上的queue来防止数据丢失 Dead Letter Queues:保存无法处理的event(仅支持Elasticsearch作为输出源)
  • (3)Logstash会有多个pipeline worker, 每一个pipeline worker会从队列中取一批数据,然后执行filter和output(worker数目及每次处理的数据量均由配置确定)

2 Logstash使用示例

2.1 Logstash Hello world

第一个示例Logstash将采用标准输入和标准输出作为input和output,并且不指定filter

  • (1)下载Logstash并解压(需要预先安装JDK8)
  • (2)cd到Logstash的根目录,并执行启动命令如下:
    cd logstash-6.4.0
    bin/logstash -e 'input { stdin { } } output { stdout {} }'
  • (3)此时Logstash已经启动成功,-e表示在启动时直接指定pipeline配置,当然也可以将该配置写入一个配置文件中,然后通过指定配置文件来启动
  • (4)在控制台输入:hello world,可以看到如下输出:
    {
    "@version" => "1",
    "host" => "localhost",
    "@timestamp" => 2018-09-18T12:39:38.514Z,
    "message" => "hello world"
    }  

Logstash会自动为数据添加@version, host, @timestamp等字段

在这个示例中Logstash从标准输入中获得数据,仅在数据中添加一些简单字段后将其输出到标准输出。

2.2 日志采集

这个示例将采用Filebeat input插件(Elastic Stack中的轻量级数据采集程序)采集本地日志,然后将结果输出到标准输出

  • (1)下载示例使用的日志文件[地址],解压并将日志放在一个确定位置
  • (2)安装filebeat,配置并启动[参考]

filebeat.yml配置如下(paths改为日志实际位置,不同版本beats配置可能略有变化,请根据情况调整)

    filebeat.prospectors:
    - input\_type: log
        paths:
            - /path/to/file/logstash-tutorial.log 
    output.logstash:
        hosts: "localhost:5044"

启动命令:

    ./filebeat -e -c filebeat.yml -d "publish"
  • (3)配置logstash并启动

1)创建first-pipeline.conf文件内容如下(该文件为pipeline配置文件,用于指定input,filter, output等):

    input {
        beats {
            port => "5044"
        }
    }
    #filter {
    #}
    output {
        stdout { codec => rubydebug }
    }

codec => rubydebug用于美化输出[参考]

2)验证配置(注意指定配置文件的路径):

    ./bin/logstash -f first-pipeline.conf --config.test_and_exit

3)启动命令:

    ./bin/logstash -f first-pipeline.conf --config.reload.automatic

--config.reload.automatic选项启用动态重载配置功能

4)预期结果:

可以在Logstash的终端显示中看到,日志文件被读取并处理为如下格式的多条数据

    {
        "@timestamp" => 2018-10-09T12:22:39.742Z,
            "offset" => 24464,
          "@version" => "1",
        "input_type" => "log",
              "beat" => {
                "name" => "VM_136_9_centos",
            "hostname" => "VM_136_9_centos",
             "version" => "5.6.10"
        },
              "host" => "VM_136_9_centos",
            "source" => "/data/home/michelmu/workspace/logstash-tutorial.log",
           "message" => "86.1.76.62 - - [04/Jan/2015:05:30:37 +0000] \"GET /style2.css HTTP/1.1\" 200 4877 \"http://www.semicomplete.com/projects/xdotool/\" \"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
              "type" => "log",
              "tags" => [
            [0] "beats_input_codec_plain_applied"
        ]
    }

相对于示例2.1,该示例使用了filebeat input插件从日志中获取一行记录,这也是Elastic stack获取日志数据最常见的一种方式。另外该示例还采用了rubydebug codec 对输出的数据进行显示美化。

2.3 日志格式处理

可以看到虽然示例2.2使用filebeat从日志中读取数据,并将数据输出到标准输出,但是日志内容作为一个整体被存放在message字段中,这样对后续存储及查询都极为不便。可以为该pipeline指定一个grok filter来对日志格式进行处理

  • (1)在first-pipeline.conf中增加filter配置如下
    input {
        beats {
            port => "5044"
        }
    }
    filter {
        grok {
            match => { "message" => "%{COMBINEDAPACHELOG}"}
        }
    }
    output {
        stdout { codec => rubydebug }
    }
  • (2)到filebeat的根目录下删除之前上报的数据历史(以便重新上报数据),并重启filebeat
    sudo rm data/registry
    sudo ./filebeat -e -c filebeat.yml -d "publish"
  • (3)由于之前启动Logstash设置了自动更新配置,因此Logstash不需要重新启动,这个时候可以获取到的日志数据如下:
    {
            "request" => "/style2.css",
              "agent" => "\"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
             "offset" => 24464,
               "auth" => "-",
              "ident" => "-",
         "input_type" => "log",
               "verb" => "GET",
             "source" => "/data/home/michelmu/workspace/logstash-tutorial.log",
            "message" => "86.1.76.62 - - [04/Jan/2015:05:30:37 +0000] \"GET /style2.css HTTP/1.1\" 200 4877 \"http://www.semicomplete.com/projects/xdotool/\" \"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
               "type" => "log",
               "tags" => [
            [0] "beats_input_codec_plain_applied"
        ],
           "referrer" => "\"http://www.semicomplete.com/projects/xdotool/\"",
         "@timestamp" => 2018-10-09T12:24:21.276Z,
           "response" => "200",
              "bytes" => "4877",
           "clientip" => "86.1.76.62",
           "@version" => "1",
               "beat" => {
                "name" => "VM_136_9_centos",
            "hostname" => "VM_136_9_centos",
             "version" => "5.6.10"
        },
               "host" => "VM_136_9_centos",
        "httpversion" => "1.1",
          "timestamp" => "04/Jan/2015:05:30:37 +0000"
    }

可以看到message中的数据被详细解析出来了

2.4 数据派生和增强

Logstash中的一些filter可以根据现有数据生成一些新的数据,如geoip可以根据ip生成经纬度信息

  • (1)在first-pipeline.conf中增加geoip配置如下
    input {
        beats {
            port => "5044"
        }
    }
     filter {
        grok {
            match => { "message" => "%{COMBINEDAPACHELOG}"}
        }
        geoip {
            source => "clientip"
        }
    }
    output {
        stdout { codec => rubydebug }
    }
  • (2)如2.3一样清空filebeat历史数据,并重启
  • (3)当然Logstash仍然不需要重启,可以看到输出变为如下:
    {
            "request" => "/style2.css",
              "agent" => "\"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
              "geoip" => {
                  "timezone" => "Europe/London",
                        "ip" => "86.1.76.62",
                  "latitude" => 51.5333,
            "continent_code" => "EU",
                 "city_name" => "Willesden",
              "country_name" => "United Kingdom",
             "country_code2" => "GB",
             "country_code3" => "GB",
               "region_name" => "Brent",
                  "location" => {
                "lon" => -0.2333,
                "lat" => 51.5333
            },
               "postal_code" => "NW10",
               "region_code" => "BEN",
                 "longitude" => -0.2333
        },
             "offset" => 24464,
               "auth" => "-",
              "ident" => "-",
         "input_type" => "log",
               "verb" => "GET",
             "source" => "/data/home/michelmu/workspace/logstash-tutorial.log",
            "message" => "86.1.76.62 - - [04/Jan/2015:05:30:37 +0000] \"GET /style2.css HTTP/1.1\" 200 4877 \"http://www.semicomplete.com/projects/xdotool/\" \"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
               "type" => "log",
               "tags" => [
            [0] "beats_input_codec_plain_applied"
        ],
           "referrer" => "\"http://www.semicomplete.com/projects/xdotool/\"",
         "@timestamp" => 2018-10-09T12:37:46.686Z,
           "response" => "200",
              "bytes" => "4877",
           "clientip" => "86.1.76.62",
           "@version" => "1",
               "beat" => {
                "name" => "VM_136_9_centos",
            "hostname" => "VM_136_9_centos",
             "version" => "5.6.10"
        },
               "host" => "VM_136_9_centos",
        "httpversion" => "1.1",
          "timestamp" => "04/Jan/2015:05:30:37 +0000"
    }

可以看到根据ip派生出了许多地理位置信息数据

2.5 将数据导入Elasticsearch

Logstash作为Elastic stack的重要组成部分,其最常用的功能是将数据导入到Elasticssearch中。将Logstash中的数据导入到Elasticsearch中操作也非常的方便,只需要在pipeline配置文件中增加Elasticsearch的output即可。

  • (1)首先要有一个已经部署好的Logstash,当然可以使用腾讯云快速创建一个Elasticsearch创建地址
  • (2)在first-pipeline.conf中增加Elasticsearch的配置,如下
   input {
        beats {
            port => "5044"
        }
    }
     filter {
        grok {
            match => { "message" => "%{COMBINEDAPACHELOG}"}
        }
        geoip {
            source => "clientip"
        }
    }
    output {
        elasticsearch {
            hosts => [ "localhost:9200" ]
        }
    }
  • (3)清理filebeat历史数据,并重启
  • (4)查询Elasticsearch确认数据是否正常上传(注意替换查询语句中的日期)
    curl -XGET 'http://172.16.16.17:9200/logstash-2018.10.09/_search?pretty&q=response=200'
  • (5)如果Elasticsearch关联了Kibana也可以使用kibana查看数据是否正常上报

kibana图示

Logstash提供了大量的Input, filter, output, codec的插件,用户可以根据自己的需要,使用一个或多个组件实现自己的功能,当然用户也可以自定义插件以实现更为定制化的功能。自定义插件可以参考[logstash input插件开发]

3 部署Logstash

演示过如何快速使用Logstash后,现在详细讲述一下Logstash的部署方式。

3.1 安装

  • 安装JDK:Logstash采用JRuby编写,运行需要JDK环境,因此安装Logstash前需要先安装JDK。(当前6.4仅支持JDK8)
  • 安装Logstash:可以采用直接下载压缩包方式安装,也通过APT或YUM安装,另外Logstash支持安装到Docker中。[Logstash安装参考]
  • 安装X-PACK:在6.3及之后版本X-PACK会随Logstash安装,在此之前需要手动安装[参考链接]

3.2 目录结构

logstash的目录主要包括:根目录bin目录配置目录日志目录插件目录数据目录

不同安装方式各目录的默认位置参考[此处]

3.3 配置文件

  • Pipeline配置文件,名称可以自定义,在启动Logstash时显式指定,编写方式可以参考前面示例,对于具体插件的配置方式参见具体插件的说明(使用Logstash时必须配置): 用于定义一个pipeline,数据处理方式和输出源
  • Settings配置文件(可以使用默认配置): 在使用Logstash时可以不用设置,用于性能调优,日志记录等
    • logstash.yml:用于控制logstash的执行过程[参考链接]
    • pipelines.yml: 如果有多个pipeline时使用该配置来配置多pipeline执行[参考链接]
    • jvm.options:jvm的配置
    • log4j2.properties:log4j 2的配置,用于记录logstash运行日志[参考链接]
    • startup.options: 仅适用于Lniux系统,用于设置系统启动项目!
  • 为了保证敏感配置的安全性,logstash提供了配置加密功能[参考链接]

3.4 启动关闭方式

3.4.1 启动

3.5 扩展Logstash

当单个Logstash无法满足性能需求时,可以采用横向扩展的方式来提高Logstash的处理能力。横向扩展的多个Logstash相互独立,采用相同的pipeline配置,另外可以在这多个Logstash前增加一个LoadBalance,以实现多个Logstash的负载均衡。

4 性能调优

[详细调优参考]

  • (1)Inputs和Outputs的性能:当输入输出源的性能已经达到上限,那么性能瓶颈不在Logstash,应优先对输入输出源的性能进行调优。
  • (2)系统性能指标
    • CPU:确定CPU使用率是否过高,如果CPU过高则先查看JVM堆空间使用率部分,确认是否为GC频繁导致,如果GC正常,则可以通过调节Logstash worker相关配置来解决。
    • 内存:由于Logstash运行在JVM上,因此注意调整JVM堆空间上限,以便其有足够的运行空间。另外注意Logstash所在机器上是否有其他应用占用了大量内存,导致Logstash内存磁盘交换频繁。
    • I/O使用率: 1)磁盘IO: 磁盘IO饱和可能是因为使用了会导致磁盘IO饱和的创建(如file output),另外Logstash中出现错误产生大量错误日志时也会导致磁盘IO饱和。Linux下可以通过iostat, dstat等查看磁盘IO情况 2)网络IO: 网络IO饱和一般发生在使用有大量网络操作的插件时。linux下可以使用dstat或iftop等查看网络IO情况
  • (3)JVM堆检查
    • 如果JVM堆大小设置过小会导致GC频繁,从而导致CPU使用率过高
    • 快速验证这个问题的方法是double堆大小,看性能是否有提升。注意要给系统至少预留1GB的空间。
    • 为了精确查找问题可以使用jmap或VisualVM。[参考]
    • 设置Xms和Xmx为相同值,防止堆大小在运行时调整,这个过程非常消耗性能。
  • (4)Logstash worker设置: worker相关配置在logstash.yml中,主要包括如下三个:
    • pipeline.workers: 该参数用以指定Logstash中执行filter和output的线程数,当如果发现CPU使用率尚未达到上限,可以通过调整该参数,为Logstash提供更高的性能。建议将Worker数设置适当超过CPU核数可以减少IO等待时间对处理过程的影响。实际调优中可以先通过-w指定该参数,当确定好数值后再写入配置文件中。
    • pipeline.batch.size: 该指标用于指定单个worker线程一次性执行flilter和output的event批量数。增大该值可以减少IO次数,提高处理速度,但是也以为这增加内存等资源的消耗。当与Elasticsearch联用时,该值可以用于指定Elasticsearch一次bluck操作的大小。
    • pipeline.batch.delay: 该指标用于指定worker等待时间的超时时间,如果worker在该时间内没有等到pipeline.batch.size个事件,那么将直接开始执行filter和output而不再等待。

结束语

Logstash作为Elastic Stack的重要组成部分,在Elasticsearch数据采集和处理过程中扮演着重要的角色。本文通过简单示例的演示和Logstash基础知识的铺陈,希望可以帮助初次接触Logstash的用户对Logstash有一个整体认识,并能较为快速上手。对于Logstash的高阶使用,仍需要用户在使用过程中结合实际情况查阅相关资源深入研究。当然也欢迎大家积极交流,并对文中的错误提出宝贵意见。

MORE:

继续阅读 »

本文同步发布在腾讯云+社区Elasticsearch专栏:https://cloud.tencent.com/developer/column/4008
Elasticsearch是当前主流的分布式大数据存储和搜索引擎,可以为用户提供强大的全文本检索能力,广泛应用于日志检索,全站搜索等领域。Logstash作为Elasicsearch常用的实时数据采集引擎,可以采集来自不同数据源的数据,并对数据进行处理后输出到多种输出源,是Elastic Stack 的重要组成部分。本文从Logstash的工作原理,使用示例,部署方式及性能调优等方面入手,为大家提供一个快速入门Logstash的方式。文章最后也给出了一些深入了解Logstash的的链接,以方便大家根据需要详细了解。

Logstash简介

1 Logstash工作原理

1.1 处理过程

Logstash处理过程

如上图,Logstash的数据处理过程主要包括:Inputs, Filters, Outputs 三部分, 另外在Inputs和Outputs中可以使用Codecs对数据格式进行处理。这四个部分均以插件形式存在,用户通过定义pipeline配置文件,设置需要使用的input,filter,output, codec插件,以实现特定的数据采集,数据处理,数据输出等功能

  • (1)Inputs:用于从数据源获取数据,常见的插件如file, syslog, redis, beats 等[详细参考]
  • (2)Filters:用于处理数据如格式转换,数据派生等,常见的插件如grok, mutate, drop, clone, geoip等[详细参考]
  • (3)Outputs:用于数据输出,常见的插件如elastcisearch,file, graphite, statsd等[详细参考]
  • (4)Codecs:Codecs不是一个单独的流程,而是在输入和输出等插件中用于数据转换的模块,用于对数据进行编码处理,常见的插件如json,multiline[详细参考]

可以点击每个模块后面的_详细参考_链接了解该模块的插件列表及对应功能

1.2 执行模型:

  • (1)每个Input启动一个线程,从对应数据源获取数据
  • (2)Input会将数据写入一个队列:默认为内存中的有界队列(意外停止会导致数据丢失)。为了防止数丢失Logstash提供了两个特性: Persistent Queues:通过磁盘上的queue来防止数据丢失 Dead Letter Queues:保存无法处理的event(仅支持Elasticsearch作为输出源)
  • (3)Logstash会有多个pipeline worker, 每一个pipeline worker会从队列中取一批数据,然后执行filter和output(worker数目及每次处理的数据量均由配置确定)

2 Logstash使用示例

2.1 Logstash Hello world

第一个示例Logstash将采用标准输入和标准输出作为input和output,并且不指定filter

  • (1)下载Logstash并解压(需要预先安装JDK8)
  • (2)cd到Logstash的根目录,并执行启动命令如下:
    cd logstash-6.4.0
    bin/logstash -e 'input { stdin { } } output { stdout {} }'
  • (3)此时Logstash已经启动成功,-e表示在启动时直接指定pipeline配置,当然也可以将该配置写入一个配置文件中,然后通过指定配置文件来启动
  • (4)在控制台输入:hello world,可以看到如下输出:
    {
    "@version" => "1",
    "host" => "localhost",
    "@timestamp" => 2018-09-18T12:39:38.514Z,
    "message" => "hello world"
    }  

Logstash会自动为数据添加@version, host, @timestamp等字段

在这个示例中Logstash从标准输入中获得数据,仅在数据中添加一些简单字段后将其输出到标准输出。

2.2 日志采集

这个示例将采用Filebeat input插件(Elastic Stack中的轻量级数据采集程序)采集本地日志,然后将结果输出到标准输出

  • (1)下载示例使用的日志文件[地址],解压并将日志放在一个确定位置
  • (2)安装filebeat,配置并启动[参考]

filebeat.yml配置如下(paths改为日志实际位置,不同版本beats配置可能略有变化,请根据情况调整)

    filebeat.prospectors:
    - input\_type: log
        paths:
            - /path/to/file/logstash-tutorial.log 
    output.logstash:
        hosts: "localhost:5044"

启动命令:

    ./filebeat -e -c filebeat.yml -d "publish"
  • (3)配置logstash并启动

1)创建first-pipeline.conf文件内容如下(该文件为pipeline配置文件,用于指定input,filter, output等):

    input {
        beats {
            port => "5044"
        }
    }
    #filter {
    #}
    output {
        stdout { codec => rubydebug }
    }

codec => rubydebug用于美化输出[参考]

2)验证配置(注意指定配置文件的路径):

    ./bin/logstash -f first-pipeline.conf --config.test_and_exit

3)启动命令:

    ./bin/logstash -f first-pipeline.conf --config.reload.automatic

--config.reload.automatic选项启用动态重载配置功能

4)预期结果:

可以在Logstash的终端显示中看到,日志文件被读取并处理为如下格式的多条数据

    {
        "@timestamp" => 2018-10-09T12:22:39.742Z,
            "offset" => 24464,
          "@version" => "1",
        "input_type" => "log",
              "beat" => {
                "name" => "VM_136_9_centos",
            "hostname" => "VM_136_9_centos",
             "version" => "5.6.10"
        },
              "host" => "VM_136_9_centos",
            "source" => "/data/home/michelmu/workspace/logstash-tutorial.log",
           "message" => "86.1.76.62 - - [04/Jan/2015:05:30:37 +0000] \"GET /style2.css HTTP/1.1\" 200 4877 \"http://www.semicomplete.com/projects/xdotool/\" \"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
              "type" => "log",
              "tags" => [
            [0] "beats_input_codec_plain_applied"
        ]
    }

相对于示例2.1,该示例使用了filebeat input插件从日志中获取一行记录,这也是Elastic stack获取日志数据最常见的一种方式。另外该示例还采用了rubydebug codec 对输出的数据进行显示美化。

2.3 日志格式处理

可以看到虽然示例2.2使用filebeat从日志中读取数据,并将数据输出到标准输出,但是日志内容作为一个整体被存放在message字段中,这样对后续存储及查询都极为不便。可以为该pipeline指定一个grok filter来对日志格式进行处理

  • (1)在first-pipeline.conf中增加filter配置如下
    input {
        beats {
            port => "5044"
        }
    }
    filter {
        grok {
            match => { "message" => "%{COMBINEDAPACHELOG}"}
        }
    }
    output {
        stdout { codec => rubydebug }
    }
  • (2)到filebeat的根目录下删除之前上报的数据历史(以便重新上报数据),并重启filebeat
    sudo rm data/registry
    sudo ./filebeat -e -c filebeat.yml -d "publish"
  • (3)由于之前启动Logstash设置了自动更新配置,因此Logstash不需要重新启动,这个时候可以获取到的日志数据如下:
    {
            "request" => "/style2.css",
              "agent" => "\"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
             "offset" => 24464,
               "auth" => "-",
              "ident" => "-",
         "input_type" => "log",
               "verb" => "GET",
             "source" => "/data/home/michelmu/workspace/logstash-tutorial.log",
            "message" => "86.1.76.62 - - [04/Jan/2015:05:30:37 +0000] \"GET /style2.css HTTP/1.1\" 200 4877 \"http://www.semicomplete.com/projects/xdotool/\" \"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
               "type" => "log",
               "tags" => [
            [0] "beats_input_codec_plain_applied"
        ],
           "referrer" => "\"http://www.semicomplete.com/projects/xdotool/\"",
         "@timestamp" => 2018-10-09T12:24:21.276Z,
           "response" => "200",
              "bytes" => "4877",
           "clientip" => "86.1.76.62",
           "@version" => "1",
               "beat" => {
                "name" => "VM_136_9_centos",
            "hostname" => "VM_136_9_centos",
             "version" => "5.6.10"
        },
               "host" => "VM_136_9_centos",
        "httpversion" => "1.1",
          "timestamp" => "04/Jan/2015:05:30:37 +0000"
    }

可以看到message中的数据被详细解析出来了

2.4 数据派生和增强

Logstash中的一些filter可以根据现有数据生成一些新的数据,如geoip可以根据ip生成经纬度信息

  • (1)在first-pipeline.conf中增加geoip配置如下
    input {
        beats {
            port => "5044"
        }
    }
     filter {
        grok {
            match => { "message" => "%{COMBINEDAPACHELOG}"}
        }
        geoip {
            source => "clientip"
        }
    }
    output {
        stdout { codec => rubydebug }
    }
  • (2)如2.3一样清空filebeat历史数据,并重启
  • (3)当然Logstash仍然不需要重启,可以看到输出变为如下:
    {
            "request" => "/style2.css",
              "agent" => "\"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
              "geoip" => {
                  "timezone" => "Europe/London",
                        "ip" => "86.1.76.62",
                  "latitude" => 51.5333,
            "continent_code" => "EU",
                 "city_name" => "Willesden",
              "country_name" => "United Kingdom",
             "country_code2" => "GB",
             "country_code3" => "GB",
               "region_name" => "Brent",
                  "location" => {
                "lon" => -0.2333,
                "lat" => 51.5333
            },
               "postal_code" => "NW10",
               "region_code" => "BEN",
                 "longitude" => -0.2333
        },
             "offset" => 24464,
               "auth" => "-",
              "ident" => "-",
         "input_type" => "log",
               "verb" => "GET",
             "source" => "/data/home/michelmu/workspace/logstash-tutorial.log",
            "message" => "86.1.76.62 - - [04/Jan/2015:05:30:37 +0000] \"GET /style2.css HTTP/1.1\" 200 4877 \"http://www.semicomplete.com/projects/xdotool/\" \"Mozilla/5.0 (X11; Linux x86_64; rv:24.0) Gecko/20140205 Firefox/24.0 Iceweasel/24.3.0\"",
               "type" => "log",
               "tags" => [
            [0] "beats_input_codec_plain_applied"
        ],
           "referrer" => "\"http://www.semicomplete.com/projects/xdotool/\"",
         "@timestamp" => 2018-10-09T12:37:46.686Z,
           "response" => "200",
              "bytes" => "4877",
           "clientip" => "86.1.76.62",
           "@version" => "1",
               "beat" => {
                "name" => "VM_136_9_centos",
            "hostname" => "VM_136_9_centos",
             "version" => "5.6.10"
        },
               "host" => "VM_136_9_centos",
        "httpversion" => "1.1",
          "timestamp" => "04/Jan/2015:05:30:37 +0000"
    }

可以看到根据ip派生出了许多地理位置信息数据

2.5 将数据导入Elasticsearch

Logstash作为Elastic stack的重要组成部分,其最常用的功能是将数据导入到Elasticssearch中。将Logstash中的数据导入到Elasticsearch中操作也非常的方便,只需要在pipeline配置文件中增加Elasticsearch的output即可。

  • (1)首先要有一个已经部署好的Logstash,当然可以使用腾讯云快速创建一个Elasticsearch创建地址
  • (2)在first-pipeline.conf中增加Elasticsearch的配置,如下
   input {
        beats {
            port => "5044"
        }
    }
     filter {
        grok {
            match => { "message" => "%{COMBINEDAPACHELOG}"}
        }
        geoip {
            source => "clientip"
        }
    }
    output {
        elasticsearch {
            hosts => [ "localhost:9200" ]
        }
    }
  • (3)清理filebeat历史数据,并重启
  • (4)查询Elasticsearch确认数据是否正常上传(注意替换查询语句中的日期)
    curl -XGET 'http://172.16.16.17:9200/logstash-2018.10.09/_search?pretty&q=response=200'
  • (5)如果Elasticsearch关联了Kibana也可以使用kibana查看数据是否正常上报

kibana图示

Logstash提供了大量的Input, filter, output, codec的插件,用户可以根据自己的需要,使用一个或多个组件实现自己的功能,当然用户也可以自定义插件以实现更为定制化的功能。自定义插件可以参考[logstash input插件开发]

3 部署Logstash

演示过如何快速使用Logstash后,现在详细讲述一下Logstash的部署方式。

3.1 安装

  • 安装JDK:Logstash采用JRuby编写,运行需要JDK环境,因此安装Logstash前需要先安装JDK。(当前6.4仅支持JDK8)
  • 安装Logstash:可以采用直接下载压缩包方式安装,也通过APT或YUM安装,另外Logstash支持安装到Docker中。[Logstash安装参考]
  • 安装X-PACK:在6.3及之后版本X-PACK会随Logstash安装,在此之前需要手动安装[参考链接]

3.2 目录结构

logstash的目录主要包括:根目录bin目录配置目录日志目录插件目录数据目录

不同安装方式各目录的默认位置参考[此处]

3.3 配置文件

  • Pipeline配置文件,名称可以自定义,在启动Logstash时显式指定,编写方式可以参考前面示例,对于具体插件的配置方式参见具体插件的说明(使用Logstash时必须配置): 用于定义一个pipeline,数据处理方式和输出源
  • Settings配置文件(可以使用默认配置): 在使用Logstash时可以不用设置,用于性能调优,日志记录等
    • logstash.yml:用于控制logstash的执行过程[参考链接]
    • pipelines.yml: 如果有多个pipeline时使用该配置来配置多pipeline执行[参考链接]
    • jvm.options:jvm的配置
    • log4j2.properties:log4j 2的配置,用于记录logstash运行日志[参考链接]
    • startup.options: 仅适用于Lniux系统,用于设置系统启动项目!
  • 为了保证敏感配置的安全性,logstash提供了配置加密功能[参考链接]

3.4 启动关闭方式

3.4.1 启动

3.5 扩展Logstash

当单个Logstash无法满足性能需求时,可以采用横向扩展的方式来提高Logstash的处理能力。横向扩展的多个Logstash相互独立,采用相同的pipeline配置,另外可以在这多个Logstash前增加一个LoadBalance,以实现多个Logstash的负载均衡。

4 性能调优

[详细调优参考]

  • (1)Inputs和Outputs的性能:当输入输出源的性能已经达到上限,那么性能瓶颈不在Logstash,应优先对输入输出源的性能进行调优。
  • (2)系统性能指标
    • CPU:确定CPU使用率是否过高,如果CPU过高则先查看JVM堆空间使用率部分,确认是否为GC频繁导致,如果GC正常,则可以通过调节Logstash worker相关配置来解决。
    • 内存:由于Logstash运行在JVM上,因此注意调整JVM堆空间上限,以便其有足够的运行空间。另外注意Logstash所在机器上是否有其他应用占用了大量内存,导致Logstash内存磁盘交换频繁。
    • I/O使用率: 1)磁盘IO: 磁盘IO饱和可能是因为使用了会导致磁盘IO饱和的创建(如file output),另外Logstash中出现错误产生大量错误日志时也会导致磁盘IO饱和。Linux下可以通过iostat, dstat等查看磁盘IO情况 2)网络IO: 网络IO饱和一般发生在使用有大量网络操作的插件时。linux下可以使用dstat或iftop等查看网络IO情况
  • (3)JVM堆检查
    • 如果JVM堆大小设置过小会导致GC频繁,从而导致CPU使用率过高
    • 快速验证这个问题的方法是double堆大小,看性能是否有提升。注意要给系统至少预留1GB的空间。
    • 为了精确查找问题可以使用jmap或VisualVM。[参考]
    • 设置Xms和Xmx为相同值,防止堆大小在运行时调整,这个过程非常消耗性能。
  • (4)Logstash worker设置: worker相关配置在logstash.yml中,主要包括如下三个:
    • pipeline.workers: 该参数用以指定Logstash中执行filter和output的线程数,当如果发现CPU使用率尚未达到上限,可以通过调整该参数,为Logstash提供更高的性能。建议将Worker数设置适当超过CPU核数可以减少IO等待时间对处理过程的影响。实际调优中可以先通过-w指定该参数,当确定好数值后再写入配置文件中。
    • pipeline.batch.size: 该指标用于指定单个worker线程一次性执行flilter和output的event批量数。增大该值可以减少IO次数,提高处理速度,但是也以为这增加内存等资源的消耗。当与Elasticsearch联用时,该值可以用于指定Elasticsearch一次bluck操作的大小。
    • pipeline.batch.delay: 该指标用于指定worker等待时间的超时时间,如果worker在该时间内没有等到pipeline.batch.size个事件,那么将直接开始执行filter和output而不再等待。

结束语

Logstash作为Elastic Stack的重要组成部分,在Elasticsearch数据采集和处理过程中扮演着重要的角色。本文通过简单示例的演示和Logstash基础知识的铺陈,希望可以帮助初次接触Logstash的用户对Logstash有一个整体认识,并能较为快速上手。对于Logstash的高阶使用,仍需要用户在使用过程中结合实际情况查阅相关资源深入研究。当然也欢迎大家积极交流,并对文中的错误提出宝贵意见。

MORE:

收起阅读 »

当Elasticsearch遇见Kafka--Kafka Connect

本文同步发布在腾讯云+社区Elasticsearch专栏中:https://cloud.tencent.com/developer/column/4008
在“当Elasticsearch遇见Kafka--Logstash kafka input插件”一文中,我对Logstash的Kafka input插件进行了简单的介绍,并通过实际操作的方式,为大家呈现了使用该方式实现Kafka与Elastisearch整合的基本过程。可以看出使用Logstash input插件的方式,具有配置简单,数据处理方便等优点。然而使用Logstash Kafka插件并不是Kafka与Elsticsearch整合的唯一方案,另一种比较常见的方案是使用Kafka的开源组件Kafka Connect。

Confluent实现Kafka与Elasticsearch的连接

1 Kafka Connect简介

Kafka Connect是Kafka的开源组件Confluent提供的功能,用于实现Kafka与外部系统的连接。Kafka Connect同时支持分布式模式和单机模式,另外提供了一套完整的REST接口,用于查看和管理Kafka Connectors,还具有offset自动管理,可扩展等优点。

Kafka connect分为企业版和开源版,企业版在开源版的基础之上提供了监控,负载均衡,副本等功能,实际生产环境中建议使用企业版。(本测试使用开源版)

Kafka connect workers有两种工作模式,单机模式和分布式模式。在开发和适合使用单机模式的场景下,可以使用standalone模式, 在实际生产环境下由于单个worker的数据压力会比较大,distributed模式对负载均和和扩展性方面会有很大帮助。(本测试使用standalone模式)

关于Kafka Connect的详细情况可以参考[Kafka Connect]

2 使用Kafka Connect连接Kafka和Elasticsearch

2.1 测试环境准备

本文与使用Logstash Kafka input插件环境一样[传送门],组件列表如下

服务 ip port
Elasticsearch service 192.168.0.8 9200
Ckafka 192.168.13.10 9092
CVM 192.168.0.13 -

kafka topic也复用原来了的kafka_es_test

2.2 Kafka Connect 安装

[Kafka Connec下载地址]

本文下载的为开源版本confluent-oss-5.0.1-2.11.tar.gz,下载后解压

2.3 Worker配置

1) 配置参考

如前文所说,worker分为Standalone和Distributed两种模式,针对两种模式的配置,参考如下

[通用配置]

[Standalone Woker配置]

[Distributed Worker配置]

此处需要注意的是Kafka Connect默认使用AvroConverter,使用该AvroConverter时需要注意必须启动Schema Registry服务

2) 实际操作

本测试使用standalone模式,因此修改/root/confluent-5.0.1/etc/schema-registry/connect-avro-standalone.properties

bootstrap.servers=192.168.13.10:9092

2.4 Elasticsearch Connector配置

1) 配置参考

[Connectors通用配置]

[Elasticsearch Configuration Options]

2) 实际操作

修改/root/confluent-5.0.1/etc/kafka-connect-elasticsearch/quickstart-elasticsearch.properties

name=elasticsearch-sink
connector.class=io.confluent.connect.elasticsearch.ElasticsearchSinkConnector
tasks.max=1
topics=kafka_es_test
key.ignore=true
connection.url=http://192.168.0.8:9200
type.name=kafka-connect

注意: 其中topics不仅对应Kafka的topic名称,同时也是Elasticsearch的索引名,当然也可以通过topic.index.map来设置从topic名到Elasticsearch索引名的映射

2.5 启动connector

1 注意事项

1) 由于配置文件中jar包位置均采用的相对路径,因此建议在confluent根目录下执行命令和启动程序,以避免不必要的问题

2) 如果前面没有修改converter,仍采用AvroConverter, 注意需要在启动connertor前启动Schema Registry服务

2 启动Schema Registry服务

正如前文所说,由于在配置worker时指定使用了AvroConverter,因此需要启动Schema Registry服务。而该服务需要指定一个zookeeper地址或Kafka地址,以存储schema数据。由于CKafka不支持用户通过接口形式创建topic,因此需要在本机起一个kafka以创建名为_schema的topic。

1) 启动Zookeeper

./bin/zookeeper-server-start -daemon etc/kafka/zookeeper.properties

2) 启动kafka

./bin/kafka-server-start -daemon etc/kafka/server.properties

3) 启动schema Registry

./bin/schema-registry-start -daemon etc/schema-registry/schema-registry.properties

4) 使用netstat -natpl 查看各服务端口是否正常启动

zookeeper 2181

kafka 9092

schema registry 8081

3 启动Connector

./bin/connect-standalone -daemon  etc/schema-registry/connect-avro-standalone.properties etc/kafka-connect-elasticsearch/quickstart-elasticsearch.properties

ps:以上启动各服务均可在logs目录下找到对应日志

2.6 启动Kafka Producer

由于我们采用的是AvroConverter,因此不能采用Kafka工具包中的producer。Kafka Connector bin目录下提供了Avro Producer

1) 启动Producer

./bin/kafka-avro-console-producer --broker-list 192.168.13.10:9092 --topic kafka_es_test --property value.schema='{"type":"record","name":"person","fields":[{"name":"nickname","type":"string"}]}'

2) 输入如下数据

{"nickname":"michel"}
{"nickname":"mushao"}

2.7 Kibana验证结果

1) 查看索引

在kibana Dev Tools的Console中输入

GET _cat/indices

结果

green open kafka_es_test 36QtDP6vQOG7ubOa161wGQ 5 1 1 0 7.9kb 3.9kb
green open .kibana       QUw45tN0SHqeHbF9-QVU6A 1 1 1 0 5.5kb 2.7kb

可以看到名为kafka_es_test的索引被成功创建

2) 查看数据

{
  "took": 0,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1,
    "hits": [
      {
        "_index": "kafka_es_test",
        "_type": "kafka-connect",
        "_id": "kafka_es_test+0+0",
        "_score": 1,
        "_source": {
          "nickname": "michel"
        }
      },
      {
        "_index": "kafka_es_test",
        "_type": "kafka-connect",
        "_id": "kafka_es_test+0+1",
        "_score": 1,
        "_source": {
          "nickname": "mushao"
        }
      }
    ]
  }
}

可以看到数据已经被成功写入

3 Confluent CLI

3.1 简介

查阅资料时发现很多文章都是使用Confluent CLI启动Kafka Connect,然而官方文档已经明确说明了该CLI只是适用于开发阶段,不能用于生产环境。

它可以一键启动包括zookeeper,kafka,schema registry, kafka rest, connect等在内的多个服务。但是这些服务对于Kafka Connect都不是必须的,如果不使用AvroConverter,则只需要启动Connect即可。即使使用了AvroConverter, 也只需要启动schema registry,将schema保存在远端的kafka中。Kafka Connect REST API也只是为用户提供一个管理connector的接口,也不是必选的。

另外使用CLI启动默认配置为启动Distributed的Connector,需要通过环境变量来修改配置

3.2 使用Confluent CLI

confluent CLI提供了丰富的命令,包括服务启动,服务停止,状态查询,日志查看等,详情参考如下简介视频 [Introducing the Confluent CLI | Screencast]

1) 启动

./bin/confluent start

2) 检查confluent运行状态

./bin/confluent status

当得到如下结果则说明confluent启动成功

ksql-server is [UP]
connect is [UP]
kafka-rest is [UP]
schema-registry is [UP]
kafka is [UP]
zookeeper is [UP]

3) 问题定位

如果第二步出现问题,可以使用log命令查看,如connect未启动成功则

./bin/confluent log connect

4) 加载Elasticsearch Connector

a) 查看connector

./bin/confluent list connectors

结果

Bundled Predefined Connectors (edit configuration under etc/):
elasticsearch-sink
file-source
file-sink
jdbc-source
jdbc-sink
hdfs-sink
s3-sink

b) 加载Elasticsearch connector

./bin/confluent load elasticsearch-sink

结果

{
    "name": "elasticsearch-sink",
    "config": {
        "connector.class": "io.confluent.connect.elasticsearch.ElasticsearchSinkConnector",
        "tasks.max": "1",
        "topics": "kafka_es_test",
        "key.ignore": "true",
        "connection.url": "http://192.168.0.8:9200",
        "type.name": "kafka-connect",
        "name": "elasticsearch-sink"
    },
    "tasks": [],
    "type": null
}

5) 使用producer生产数据,并使用kibana验证是否写入成功

4 Kafka Connect Rest API

Kafka Connect提供了一套完成的管理Connector的接口,详情参考[Kafka Connect REST Interface]。该接口可以实现对Connector的创建,销毁,修改,查询等操作

1) GET connectors 获取运行中的connector列表

2) POST connectors 使用指定的名称和配置创建connector

3) GET connectors/(string:name) 获取connector的详细信息

4) GET connectors/(string:name)/config 获取connector的配置

5) PUT connectors/(string:name)/config 设置connector的配置

6) GET connectors/(string:name)/status 获取connector状态

7) POST connectors/(stirng:name)/restart 重启connector

8) PUT connectors/(string:name)/pause 暂停connector

9) PUT connectors/(string:name)/resume 恢复connector

10) DELETE connectors/(string:name)/ 删除connector

11) GET connectors/(string:name)/tasks 获取connectors任务列表

12) GET /connectors/(string: name)/tasks/(int: taskid)/status 获取任务状态

13) POST /connectors/(string: name)/tasks/(int: taskid)/restart 重启任务

14) GET /connector-plugins/ 获取已安装插件列表

15) PUT /connector-plugins/(string: name)/config/validate 验证配置

5 总结

Kafka Connect是Kafka一个功能强大的组件,为kafka提供了与外部系统连接的一套完整方案,包括数据传输,连接管理,监控,多副本等。相对于Logstash Kafka插件,功能更为全面,但配置也相对为复杂些。有文章提到其性能也优于Logstash Kafka Input插件,如果对写入性能比较敏感的场景,可以在实际压测的基础上进行选择。另外由于直接将数据从Kafka写入Elasticsearch, 如果需要对文档进行处理时,选择Logstash可能更为方便。

继续阅读 »

本文同步发布在腾讯云+社区Elasticsearch专栏中:https://cloud.tencent.com/developer/column/4008
在“当Elasticsearch遇见Kafka--Logstash kafka input插件”一文中,我对Logstash的Kafka input插件进行了简单的介绍,并通过实际操作的方式,为大家呈现了使用该方式实现Kafka与Elastisearch整合的基本过程。可以看出使用Logstash input插件的方式,具有配置简单,数据处理方便等优点。然而使用Logstash Kafka插件并不是Kafka与Elsticsearch整合的唯一方案,另一种比较常见的方案是使用Kafka的开源组件Kafka Connect。

Confluent实现Kafka与Elasticsearch的连接

1 Kafka Connect简介

Kafka Connect是Kafka的开源组件Confluent提供的功能,用于实现Kafka与外部系统的连接。Kafka Connect同时支持分布式模式和单机模式,另外提供了一套完整的REST接口,用于查看和管理Kafka Connectors,还具有offset自动管理,可扩展等优点。

Kafka connect分为企业版和开源版,企业版在开源版的基础之上提供了监控,负载均衡,副本等功能,实际生产环境中建议使用企业版。(本测试使用开源版)

Kafka connect workers有两种工作模式,单机模式和分布式模式。在开发和适合使用单机模式的场景下,可以使用standalone模式, 在实际生产环境下由于单个worker的数据压力会比较大,distributed模式对负载均和和扩展性方面会有很大帮助。(本测试使用standalone模式)

关于Kafka Connect的详细情况可以参考[Kafka Connect]

2 使用Kafka Connect连接Kafka和Elasticsearch

2.1 测试环境准备

本文与使用Logstash Kafka input插件环境一样[传送门],组件列表如下

服务 ip port
Elasticsearch service 192.168.0.8 9200
Ckafka 192.168.13.10 9092
CVM 192.168.0.13 -

kafka topic也复用原来了的kafka_es_test

2.2 Kafka Connect 安装

[Kafka Connec下载地址]

本文下载的为开源版本confluent-oss-5.0.1-2.11.tar.gz,下载后解压

2.3 Worker配置

1) 配置参考

如前文所说,worker分为Standalone和Distributed两种模式,针对两种模式的配置,参考如下

[通用配置]

[Standalone Woker配置]

[Distributed Worker配置]

此处需要注意的是Kafka Connect默认使用AvroConverter,使用该AvroConverter时需要注意必须启动Schema Registry服务

2) 实际操作

本测试使用standalone模式,因此修改/root/confluent-5.0.1/etc/schema-registry/connect-avro-standalone.properties

bootstrap.servers=192.168.13.10:9092

2.4 Elasticsearch Connector配置

1) 配置参考

[Connectors通用配置]

[Elasticsearch Configuration Options]

2) 实际操作

修改/root/confluent-5.0.1/etc/kafka-connect-elasticsearch/quickstart-elasticsearch.properties

name=elasticsearch-sink
connector.class=io.confluent.connect.elasticsearch.ElasticsearchSinkConnector
tasks.max=1
topics=kafka_es_test
key.ignore=true
connection.url=http://192.168.0.8:9200
type.name=kafka-connect

注意: 其中topics不仅对应Kafka的topic名称,同时也是Elasticsearch的索引名,当然也可以通过topic.index.map来设置从topic名到Elasticsearch索引名的映射

2.5 启动connector

1 注意事项

1) 由于配置文件中jar包位置均采用的相对路径,因此建议在confluent根目录下执行命令和启动程序,以避免不必要的问题

2) 如果前面没有修改converter,仍采用AvroConverter, 注意需要在启动connertor前启动Schema Registry服务

2 启动Schema Registry服务

正如前文所说,由于在配置worker时指定使用了AvroConverter,因此需要启动Schema Registry服务。而该服务需要指定一个zookeeper地址或Kafka地址,以存储schema数据。由于CKafka不支持用户通过接口形式创建topic,因此需要在本机起一个kafka以创建名为_schema的topic。

1) 启动Zookeeper

./bin/zookeeper-server-start -daemon etc/kafka/zookeeper.properties

2) 启动kafka

./bin/kafka-server-start -daemon etc/kafka/server.properties

3) 启动schema Registry

./bin/schema-registry-start -daemon etc/schema-registry/schema-registry.properties

4) 使用netstat -natpl 查看各服务端口是否正常启动

zookeeper 2181

kafka 9092

schema registry 8081

3 启动Connector

./bin/connect-standalone -daemon  etc/schema-registry/connect-avro-standalone.properties etc/kafka-connect-elasticsearch/quickstart-elasticsearch.properties

ps:以上启动各服务均可在logs目录下找到对应日志

2.6 启动Kafka Producer

由于我们采用的是AvroConverter,因此不能采用Kafka工具包中的producer。Kafka Connector bin目录下提供了Avro Producer

1) 启动Producer

./bin/kafka-avro-console-producer --broker-list 192.168.13.10:9092 --topic kafka_es_test --property value.schema='{"type":"record","name":"person","fields":[{"name":"nickname","type":"string"}]}'

2) 输入如下数据

{"nickname":"michel"}
{"nickname":"mushao"}

2.7 Kibana验证结果

1) 查看索引

在kibana Dev Tools的Console中输入

GET _cat/indices

结果

green open kafka_es_test 36QtDP6vQOG7ubOa161wGQ 5 1 1 0 7.9kb 3.9kb
green open .kibana       QUw45tN0SHqeHbF9-QVU6A 1 1 1 0 5.5kb 2.7kb

可以看到名为kafka_es_test的索引被成功创建

2) 查看数据

{
  "took": 0,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 1,
    "hits": [
      {
        "_index": "kafka_es_test",
        "_type": "kafka-connect",
        "_id": "kafka_es_test+0+0",
        "_score": 1,
        "_source": {
          "nickname": "michel"
        }
      },
      {
        "_index": "kafka_es_test",
        "_type": "kafka-connect",
        "_id": "kafka_es_test+0+1",
        "_score": 1,
        "_source": {
          "nickname": "mushao"
        }
      }
    ]
  }
}

可以看到数据已经被成功写入

3 Confluent CLI

3.1 简介

查阅资料时发现很多文章都是使用Confluent CLI启动Kafka Connect,然而官方文档已经明确说明了该CLI只是适用于开发阶段,不能用于生产环境。

它可以一键启动包括zookeeper,kafka,schema registry, kafka rest, connect等在内的多个服务。但是这些服务对于Kafka Connect都不是必须的,如果不使用AvroConverter,则只需要启动Connect即可。即使使用了AvroConverter, 也只需要启动schema registry,将schema保存在远端的kafka中。Kafka Connect REST API也只是为用户提供一个管理connector的接口,也不是必选的。

另外使用CLI启动默认配置为启动Distributed的Connector,需要通过环境变量来修改配置

3.2 使用Confluent CLI

confluent CLI提供了丰富的命令,包括服务启动,服务停止,状态查询,日志查看等,详情参考如下简介视频 [Introducing the Confluent CLI | Screencast]

1) 启动

./bin/confluent start

2) 检查confluent运行状态

./bin/confluent status

当得到如下结果则说明confluent启动成功

ksql-server is [UP]
connect is [UP]
kafka-rest is [UP]
schema-registry is [UP]
kafka is [UP]
zookeeper is [UP]

3) 问题定位

如果第二步出现问题,可以使用log命令查看,如connect未启动成功则

./bin/confluent log connect

4) 加载Elasticsearch Connector

a) 查看connector

./bin/confluent list connectors

结果

Bundled Predefined Connectors (edit configuration under etc/):
elasticsearch-sink
file-source
file-sink
jdbc-source
jdbc-sink
hdfs-sink
s3-sink

b) 加载Elasticsearch connector

./bin/confluent load elasticsearch-sink

结果

{
    "name": "elasticsearch-sink",
    "config": {
        "connector.class": "io.confluent.connect.elasticsearch.ElasticsearchSinkConnector",
        "tasks.max": "1",
        "topics": "kafka_es_test",
        "key.ignore": "true",
        "connection.url": "http://192.168.0.8:9200",
        "type.name": "kafka-connect",
        "name": "elasticsearch-sink"
    },
    "tasks": [],
    "type": null
}

5) 使用producer生产数据,并使用kibana验证是否写入成功

4 Kafka Connect Rest API

Kafka Connect提供了一套完成的管理Connector的接口,详情参考[Kafka Connect REST Interface]。该接口可以实现对Connector的创建,销毁,修改,查询等操作

1) GET connectors 获取运行中的connector列表

2) POST connectors 使用指定的名称和配置创建connector

3) GET connectors/(string:name) 获取connector的详细信息

4) GET connectors/(string:name)/config 获取connector的配置

5) PUT connectors/(string:name)/config 设置connector的配置

6) GET connectors/(string:name)/status 获取connector状态

7) POST connectors/(stirng:name)/restart 重启connector

8) PUT connectors/(string:name)/pause 暂停connector

9) PUT connectors/(string:name)/resume 恢复connector

10) DELETE connectors/(string:name)/ 删除connector

11) GET connectors/(string:name)/tasks 获取connectors任务列表

12) GET /connectors/(string: name)/tasks/(int: taskid)/status 获取任务状态

13) POST /connectors/(string: name)/tasks/(int: taskid)/restart 重启任务

14) GET /connector-plugins/ 获取已安装插件列表

15) PUT /connector-plugins/(string: name)/config/validate 验证配置

5 总结

Kafka Connect是Kafka一个功能强大的组件,为kafka提供了与外部系统连接的一套完整方案,包括数据传输,连接管理,监控,多副本等。相对于Logstash Kafka插件,功能更为全面,但配置也相对为复杂些。有文章提到其性能也优于Logstash Kafka Input插件,如果对写入性能比较敏感的场景,可以在实际压测的基础上进行选择。另外由于直接将数据从Kafka写入Elasticsearch, 如果需要对文档进行处理时,选择Logstash可能更为方便。

收起阅读 »

社区日报 第451期 (2018-11-17)

  1. 如何迁移到kibana空间 http://t.cn/E2yMhZi

  2. 利用kibana空间优化管理权限。 http://t.cn/E2yJq1b

  3. Elasitcsearch索引优化。 http://t.cn/E2y6afZ
继续阅读 »
  1. 如何迁移到kibana空间 http://t.cn/E2yMhZi

  2. 利用kibana空间优化管理权限。 http://t.cn/E2yJq1b

  3. Elasitcsearch索引优化。 http://t.cn/E2y6afZ
收起阅读 »

社区日报 第450期 (2018-11-16)

1、喜大普奔!Elastic6.5发布
http://t.cn/E2PPJH2
2、Elastic开启了大数据应用新时代
http://t.cn/E2PPCmn
3、图解elasticsearch原理
http://t.cn/E2PPThd

编辑:铭毅天下
归档:https://elasticsearch.cn/article/6138
订阅:https://tinyletter.com/elastic-daily
继续阅读 »
1、喜大普奔!Elastic6.5发布
http://t.cn/E2PPJH2
2、Elastic开启了大数据应用新时代
http://t.cn/E2PPCmn
3、图解elasticsearch原理
http://t.cn/E2PPThd

编辑:铭毅天下
归档:https://elasticsearch.cn/article/6138
订阅:https://tinyletter.com/elastic-daily 收起阅读 »

社区日报 第449期 (2018-11-15)

1.基于Lucene查询原理分析Elasticsearch的性能
http://t.cn/EwZO5to
2.一个让elastalert报警更简单的UI
http://t.cn/EAgg8WQ
3.Filebeat优化实践
http://t.cn/EAge74i
 
编辑:金桥
归档:https://elasticsearch.cn/article/6137
订阅:https://tinyletter.com/elastic-daily
继续阅读 »
1.基于Lucene查询原理分析Elasticsearch的性能
http://t.cn/EwZO5to
2.一个让elastalert报警更简单的UI
http://t.cn/EAgg8WQ
3.Filebeat优化实践
http://t.cn/EAge74i
 
编辑:金桥
归档:https://elasticsearch.cn/article/6137
订阅:https://tinyletter.com/elastic-daily 收起阅读 »

ES 6.4.3 X-PACK 启用安装配置

由于 ES开源了X-PACK代码,现在6.4.3版本与6.3以及以下的有变化
我基于最新的版本整理了下启用X-PACK功能。坑比较多,给我的感觉与searchguard 搞得越来越像了……
比较坑的是 transport(9300) 必须要用SSL…… 大家注意下。 6比5复杂多了……
 
Configure each node to:
Required: Enable TLS on the transport layer.
Recommended: Enable TLS on the HTTP layer.

 
参考:
https://www.elastic.co/guide/e ... .html
  1. ES 设置
  2. 配置 TLS/SSL
  3. 配置ES(x-pack认证)
  4. 启动ES
  5. 配置密码
  6. 配置kibana

 1 Elasticsearch.yml 文件添加内容
xpack.security.enabled: true
2 .1生成CA证书
./elasticsearch-certutil ca
2.2 生成客户端证书
./elasticsearch-certutil cert --ca
2.3ES启用SSL配置文件
xpack.security.transport.ssl.verification_mode: certificate
xpack.security.transport.ssl.keystore.path: xxx.p12
xpack.security.transport.ssl.truststore.path: xxx.p12
2.4 keystore 添加内容
./elasticsearch-keystore add xpack.security.transport.ssl.keystore.secure_password
3启用相关功能


xpack.monitoring.enabled: true
xpack.graph.enabled: true
xpack.ml.enabled: true
xpack.security.enabled: true
xpack.watcher.enabled: true
xpack.security.authc.accept_default_password: false
xpack.security.transport.ssl.enabled: true
xpack.monitoring.collection.cluster.stats.timeout: 30m
xpack.monitoring.collection.index.stats.timeout: 30m
xpack.monitoring.collection.index.recovery.active_only: true
xpack.monitoring.collection.index.recovery.timeout: 30m
xpack.monitoring.history.duration: 3650d


4 启动ES
./elasticsearch -d 每台
5配置密码
./elasticsearch-setup-passwords
 6汉化kibana 这玩意我还没有整理完,5差不多搞完了。
7开始浪

6版本
无标题1.png

5版本

无标题4.png


无标题2.png


无标题3.png
继续阅读 »
由于 ES开源了X-PACK代码,现在6.4.3版本与6.3以及以下的有变化
我基于最新的版本整理了下启用X-PACK功能。坑比较多,给我的感觉与searchguard 搞得越来越像了……
比较坑的是 transport(9300) 必须要用SSL…… 大家注意下。 6比5复杂多了……
 
Configure each node to:
Required: Enable TLS on the transport layer.
Recommended: Enable TLS on the HTTP layer.

 
参考:
https://www.elastic.co/guide/e ... .html
  1. ES 设置
  2. 配置 TLS/SSL
  3. 配置ES(x-pack认证)
  4. 启动ES
  5. 配置密码
  6. 配置kibana

 1 Elasticsearch.yml 文件添加内容
xpack.security.enabled: true
2 .1生成CA证书
./elasticsearch-certutil ca
2.2 生成客户端证书
./elasticsearch-certutil cert --ca
2.3ES启用SSL配置文件
xpack.security.transport.ssl.verification_mode: certificate
xpack.security.transport.ssl.keystore.path: xxx.p12
xpack.security.transport.ssl.truststore.path: xxx.p12
2.4 keystore 添加内容
./elasticsearch-keystore add xpack.security.transport.ssl.keystore.secure_password
3启用相关功能


xpack.monitoring.enabled: true
xpack.graph.enabled: true
xpack.ml.enabled: true
xpack.security.enabled: true
xpack.watcher.enabled: true
xpack.security.authc.accept_default_password: false
xpack.security.transport.ssl.enabled: true
xpack.monitoring.collection.cluster.stats.timeout: 30m
xpack.monitoring.collection.index.stats.timeout: 30m
xpack.monitoring.collection.index.recovery.active_only: true
xpack.monitoring.collection.index.recovery.timeout: 30m
xpack.monitoring.history.duration: 3650d


4 启动ES
./elasticsearch -d 每台
5配置密码
./elasticsearch-setup-passwords
 6汉化kibana 这玩意我还没有整理完,5差不多搞完了。
7开始浪

6版本
无标题1.png

5版本

无标题4.png


无标题2.png


无标题3.png
收起阅读 »

【 报名已结束】2018 Elastic & 东方航空大数据技术沙龙

本次活动报名已截止,因为名额限制无法报名成功的小伙伴也不用着急,届时会议将采用zoom进行直播,在 PC、Mac、iPhone/iPad、安卓手机/平板上,点击https://www.zoomus.cn/j/1524425455 即可轻松加入观看。
继续阅读 »
本次活动报名已截止,因为名额限制无法报名成功的小伙伴也不用着急,届时会议将采用zoom进行直播,在 PC、Mac、iPhone/iPad、安卓手机/平板上,点击https://www.zoomus.cn/j/1524425455 即可轻松加入观看。 收起阅读 »