提问:布和纸怕什么?

Day 6 - Logstash Pipeline-to-Pipeline 尝鲜

Advent | 作者 rockybean | 发布于2018年12月06日 | | 阅读数:10140

Logstash 在 6.0 推出了 multiple pipeline 的解决方案,即在一个 logstash 实例中可以同时进行多个独立数据流程的处理工作,如下图所示。

而在这之前用户只能通过在单机运行多个 logstash 实例或者在配置文件中增加大量 if-else 条件判断语句来解决。要使用 multiple pipeline 也很简单,只需要将不同的 pipeline 在 config/pipeline.yml中定义好即可,如下所示:

- pipeline.id: apache
  pipeline.batch.size: 125
  queue.type: persisted
  path.config: "/path/to/config/apache.cfg"
- pipeline.id: nginx
  path.config: "/path/to/config/nginx.cfg"

其中 apachenginx作为独立的 pipeline 执行,而且配置也可以独立设置,互不干扰。pipeline.yml的引入极大地简化了 logstash 的配置管理工作,使得新手也可以很快完成复杂的 ETL 配置。

在 6.3 版本中,Logstash 又增加了 Pipeline-to-Pipeline的管道机制(beta),即管道和管道之间可以连接在一起组成一个完成的数据处理流。熟悉 linux 的管道命令 |的同学应该可以很快明白这种模式的好处。这无疑使得 Logstash 的配置会更加灵活,今天我们就来了解下这种灵活自由的配置方式。

1. 上手

废话少说,快速上手。修改 config/pipeline.yml文件如下:

 - pipeline.id: upstream
   config.string: input { stdin {} } output { pipeline { send_to => [test_output] } }
 - pipeline.id: downstream
   config.string: input { pipeline { address => test_output } } output{ stdout{}}

然后运行 logstash,其中 -r 表示配置文件有改动时自动重新加载,方便我们调试。

bin/logstash -r

在终端随意输入字符(比如aaa)后回车,会看到屏幕输出了类似下面的内容,代表运行成功了。

{
    "@timestamp" => 2018-12-06T14:43:50.310Z,
    "@version" => "1",
    "message" => "aaa",
    "host" => "rockybean-MacBook-Pro.local"
}

我们再回头看下这个配置,upstreamoutput 使用了名为 pipeline 的 plugin,然后 send_to的输出对象test_output是在 downstreaminput pipeline plugin 中定义的。通过这个唯一的address(虚拟地址)就能够把不同的 pipeline 连接在一起组成一个更长的pipeline来处理数据。类似下图所示:

当数据由 upstream传递给 downstream时会进行一个复制操作,这也意味着在这两个 pipeline 中的数据是完全独立的,互不影响。有一点要注意的是:数据的复制会增加额外的性能开销,比如会加大 JVM Heap 的使用。

2. 使用场景

使用方法是不是很简单,接下来我们来看下官方为我们开的几个脑洞。

2.1 Distributor Pattern 分发者模式

该模式执行效果类似下图所示:

在一个 pipeline 处理输入,然后根据不同的数据类型再分发到对应的 Pipeline 去处理。这种模式的好处在于统一输入端口,隔离不同类型的处理配置文件,减少由于配置文件混合在一起带来的维护成本。大家可以想一想如果不用这种Pipeline-to-Pipeline的方式,我们如果轻松做到一个端口处理多个来源的数据呢?

这种模式的参考配置如下所示:

# config/pipelines.yml
- pipeline.id: beats-server
  config.string: |
    input { beats { port => 5044 } }
    output {
        if [type] == apache {
          pipeline { send_to => weblogs }
        } else if [type] == system {
          pipeline { send_to => syslog }
        } else {
          pipeline { send_to => fallback }
        }
    }
- pipeline.id: weblog-processing
  config.string: |
    input { pipeline { address => weblogs } }
    filter {
       # Weblog filter statements here...
    }
    output {
      elasticsearch { hosts => [es_cluster_a_host] }
    }
- pipeline.id: syslog-processing
  config.string: |
    input { pipeline { address => syslog } }
    filter {
       # Syslog filter statements here...
    }
    output {
      elasticsearch { hosts => [es_cluster_b_host] }
    }
- pipeline.id: fallback-processing
    config.string: |
    input { pipeline { address => fallback } }
    output { elasticsearch { hosts => [es_cluster_b_host] } }

2.2 Output Isolator Pattern 输出隔离模式

虽然 Logstash 的一个 pipeline 可以配置多个 output,但是这多个 output 会相依为命,一旦某一个 output 出问题,会导致另一个 output 也无法接收新数据。而通过这种模式可以完美解决这个问题。其运行方式如下图所示:

通过输出到两个独立的 pipeline,解除相互之间的影响,比如 http service 出问题的时候,es 依然可以正常接收数据,而且两个 pipeline 可以配置独立的队列来保障数据的完备性,其配置如下所示:

# config/pipelines.yml
- pipeline.id: intake
  queue.type: persisted
  config.string: |
    input { beats { port => 5044 } }
    output { pipeline { send_to => [es, http] } }
- pipeline.id: buffered-es
  queue.type: persisted
  config.string: |
    input { pipeline { address => es } }
    output { elasticsearch { } }
- pipeline.id: buffered-http
  queue.type: persisted
  config.string: |
    input { pipeline { address => http } }
    output { http { } }

2.3 Forked Path Pattern 克隆路径模式

这个模式类似 Output Isolator Pattern,只是在不同的 output pipeline 中可以配置不同的 filter 来完成各自输出的数据处理需求,这里就不展开讲了,可以参考如下的配置,其中不同 output pipeline 的 filter 是不同的,比如 partner 这个 pipeline 去掉了一些敏感数据:

# config/pipelines.yml
- pipeline.id: intake
  queue.type: persisted
  config.string: |
    input { beats { port => 5044 } }
    output { pipeline { send_to => ["internal-es", "partner-s3"] } }
- pipeline.id: buffered-es
  queue.type: persisted
  config.string: |
    input { pipeline { address => "internal-es" } }
    # Index the full event
    output { elasticsearch { } }
- pipeline.id: partner
  queue.type: persisted
  config.string: |
    input { pipeline { address => "partner-s3" } }
    filter {
      # Remove the sensitive data
      mutate { remove_field => 'sensitive-data' }
    }
    output { s3 { } } # Output to partner's bucket

2.4 Collector Pattern 收集者模式

从名字可以看出,该模式是将所有 Pipeline 汇集于一处的处理模式,如下图所示:

其配置参考如下:

# config/pipelines.yml
- pipeline.id: beats
  config.string: |
    input { beats { port => 5044 } }
    output { pipeline { send_to => [commonOut] } }
- pipeline.id: kafka
  config.string: |
    input { kafka { ... } }
    output { pipeline { send_to => [commonOut] } }
- pipeline.id: partner
  # This common pipeline enforces the same logic whether data comes from Kafka or Beats
  config.string: |
    input { pipeline { address => commonOut } }
    filter {
      # Always remove sensitive data from all input sources
      mutate { remove_field => 'sensitive-data' }
    }
    output { elasticsearch { } }

3. 总结

本文简单给大家讲解了 Pipeline-to-Pipeline的使用方法及官方推荐的几种模式,希望可以给大家有所帮助。另外这个机制目前还处于 Beta 阶段,尝鲜需谨慎!


[尊重社区原创,转载请保留或注明出处]
本文地址:http://searchkit.cn/article/6176


3 个评论

学到新技能了,一直不知道logstash 6.0有multiple pipeline的支持,近期配置的一个多数据源解析的pipeline,仍然是用好多if..else...配置的。 ?
可以耍起来了!
pipeline如何在elasticsearch中注册?

要回复文章请先登录注册