高峰只对攀登它而不是仰望它的人来说才有真正意义。

Lucene 6 基于BKD Tree Index 的应用

keehang 发表了文章 • 0 个评论 • 6271 次浏览 • 2017-08-04 10:20 • 来自相关话题

BKD Tree 
https://www.elastic.co/blog/lucene-points-6.0
Block k-d trees are a simple yet powerful data structure. At index time, they are built by recursively partitioning the full space of N-dimensional points to be indexed into smaller and smaller rectangular cells, splitting equally along the widest ranging dimension at each step of the recursion. However, unlike an ordinary k-d tree, a block k-d tree stops recursing once there are fewer than a pre-specified (1024 in our case, by default) number of points in the cell.

At that point, all points within that cell are written into one leaf block on disk and the starting file-pointer for that block is saved into an in-heap binary tree structure. In the 1D case, this is simply a full sort of all values, divided into adjacent leaf blocks. There are k-d tree variants that can support removing values, and rebalancing, but Lucene does not need these operations because of its write-once per-segment design.
 
At search time, the same recursion takes place, testing at each level whether the requested query shape intersects the left or right sub-tree of each dimensional split, and recursing if so. In the 1D case, the query shape is simply a numeric range whereas in the 2D and 3D cases, it is a geo-spatial shape (circle, ring, rectangle, polygon, cube, etc.).
测试集合:模拟一亿条
0," nnrIuS","raet","lnsr","inu ","saia",83.405273,73.302012,3991,24,"N"," usA","airport","rra i"
1,"omlritp","aaVe","y Mu","AaVV","NMc ",15.459643,-20.826241,2627,54,"a","eemo","airport","MaArp"
2,"kyaneMr","iasm","raAA"," tnt","inls",16.606066,38.663728,2761,53,"o","arIi","airport","uiron"



1. General Multidimensional Space Points
   Search for points with exact given values. 
  Search for points which has one of the value from a given set of values. 
Search for points within a given range. 
Get the number of points which has exact point.
Get the number of points within a given range. (Ranges are multidimensional ranges. In 3D, they are boxes.)
Divide points into range-buckets and get the count in each buckets. (Range bucket is a range which has a label in it)
 
2. Locations on the planet surface. (Latitude, Longitude)
  Find closest set of airports to a given town.  
  Find the set of airports within a given radius from a particular town.
  Find the set of airports inside a country. (Country can be given as a polygon) 
  Find the set of airports within a given range of Latitudes and Longitudes. It is a Latitude, Longitude box query. (For a examples: Airports closer to the equatorial) 
  Find the set of airports closer to a given path. (Path can be something like a road. Find the airports which are less than 50km away from a given highway)
  Count the airports in each country by giving country maps as polygons.
 
search  result:
 
Loading Data is finished ----------------------------------------------------------------------
建索引花费时间:982ms
LatLon - Box Query Example------------------------------------------------------------------------------
search_LatLon_Box 花费时间:69ms

LatLon - K Nearest------------------------------------------------------------------------------
search_LatLon_Nearest 花费时间:108ms

DoublePoint 1D Point Exact------------------------------------------------------------------------------
search_Double_1D_Exact 花费时间:10ms

DoublePoint 1D - Range------------------------------------------------------------------------------
search_Double_1D_range 花费时间:8ms

DoublePoint 1D - Range Buckets -----------------------------------------------------------------------------
search_Double_1D_range_bucket 花费时间:58ms

DoublePoint multi dimensional - Range------------------------------------------------------------------------------
search_Double_MiltiDimensional_Range 花费时间:1ms
 
 
 

elasticsearch 使用scroll查询,为什么每次查询结果相同

yangg 回复了问题 • 3 人关注 • 3 个回复 • 4392 次浏览 • 2017-08-05 03:34 • 来自相关话题

每天一小问:Elastic中doc_values VS fielddata

回复

ElastIcPG 发起了问题 • 1 人关注 • 0 个回复 • 2432 次浏览 • 2017-08-03 19:49 • 来自相关话题

ElasticSearch中怎么对搜索结果集进行复杂的逻辑过滤?

xinfanwang 回复了问题 • 7 人关注 • 6 个回复 • 5286 次浏览 • 2017-11-02 10:45 • 来自相关话题

es 返回文档中如何看是由哪个搜索词搜出的

colie 回复了问题 • 2 人关注 • 2 个回复 • 2306 次浏览 • 2017-08-03 16:07 • 来自相关话题

Elastic的并发粒度是什么级别的

回复

ElastIcPG 发起了问题 • 1 人关注 • 0 个回复 • 1884 次浏览 • 2017-08-03 15:42 • 来自相关话题

一台服务器64G内存,100亿条数据,全文查能优化到30秒内吗

novia 回复了问题 • 2 人关注 • 1 个回复 • 3641 次浏览 • 2017-08-03 16:03 • 来自相关话题

又一次遇到这种问题,breakers.request内存溢出

kennywu76 回复了问题 • 4 人关注 • 1 个回复 • 3443 次浏览 • 2017-08-04 10:42 • 来自相关话题

elasticsearch安装在windows上,

wangshuoqiong 回复了问题 • 3 人关注 • 2 个回复 • 2793 次浏览 • 2017-10-09 11:25 • 来自相关话题

elasticsearch _bluk 批量导入操作报错。

回复

xiaojianjian 发起了问题 • 1 人关注 • 0 个回复 • 4556 次浏览 • 2017-08-03 15:06 • 来自相关话题

elasticsearch 过滤器过滤不完全

回复

冬月初二 回复了问题 • 1 人关注 • 2 个回复 • 2845 次浏览 • 2017-08-03 17:18 • 来自相关话题

elastic官方文档关于consistency策略验证疑问

kennywu76 回复了问题 • 2 人关注 • 2 个回复 • 5594 次浏览 • 2017-08-03 12:52 • 来自相关话题

elasticsearch索引自动生成映射?

sdoheji1234 回复了问题 • 2 人关注 • 3 个回复 • 3812 次浏览 • 2017-08-03 11:19 • 来自相关话题

elasticsearch日常使用经验分享

novia 发表了文章 • 11 个评论 • 4870 次浏览 • 2017-08-03 09:48 • 来自相关话题

日常使用中的一些经验,给使用ES的筒子们一些建议,如有错误,请多多包含..
 
幻灯片1.PNG


幻灯片2.PNG


幻灯片3.PNG


幻灯片4.PNG


幻灯片5.PNG


幻灯片6.PNG


幻灯片7.PNG


幻灯片8.PNG


幻灯片9.PNG


幻灯片10.PNG


幻灯片11.PNG


幻灯片12.PNG


幻灯片13.PNG


幻灯片14.PNG


幻灯片15.PNG


幻灯片16.PNG


 

Java调用 Fielddata is disabled on text fields by default Set fielddata=true on [geoip.city_name]

回复

clean 发起了问题 • 1 人关注 • 0 个回复 • 10053 次浏览 • 2017-08-02 17:58 • 来自相关话题