client
Spring Boot 集成 Easysearch 完整指南
Easysearch • INFINI Labs 小助手 发表了文章 • 0 个评论 • 2727 次浏览 • 2024-12-29 15:41
Easysearch 的很多用户都有这样的需要,之前是用的 ES,现在要迁移到 Easysearch,但是业务方使用的是 Spring Boot 集成的客户端,问是否能平滑迁移。
Easysearch 是完全兼容 Spring Boot 的,完全不用修改,本指南将探讨如何将 Spring Boot 和 ES 的 high-level 客户端 与 Easysearch 进行集成,涵盖从基础设置到实现 CRUD 操作和测试的所有内容。
服务器设置
首先,需要修改 Easysearch 节点的 easysearch.yml 文件,打开并配置这 2 个配置项:
elasticsearch.api_compatibility: true
#根据客户端版本配置版本号,我这里配置成 7.17.18
elasticsearch.api_compatibility_version: "7.17.18"
项目设置
然后,让我们设置 Maven 依赖。以下是 pom.xml
中的基本配置:
<properties>
<java.version>11</java.version>
<spring-data-elasticsearch.version>4.4.18</spring-data-elasticsearch.version>
<elasticsearch.version>7.17.18</elasticsearch.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
<version>${spring-data-elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
</dependencies>
客户端连接配置
完全和连接 Elasticsearch 的方式一样,不用修改:
配置 src/main/resources/application.yml 文件
spring:
elasticsearch:
rest:
uris: https://localhost:9202
username: admin
password: xxxxxxxxxxx
ssl:
verification-mode: none
连接配置类
@Configuration
public class ElasticsearchConfig extends AbstractElasticsearchConfiguration {
@Value("${spring.elasticsearch.rest.uris}")
private String elasticsearchUrl;
@Value("${spring.elasticsearch.rest.username}")
private String username;
@Value("${spring.elasticsearch.rest.password}")
private String password;
@Override
@Bean
public RestHighLevelClient elasticsearchClient() {
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY,
new UsernamePasswordCredentials(username, password));
SSLContext sslContext = SSLContexts.custom()
.loadTrustMaterial(null, (x509Certificates, s) -> true)
.build();
RestClientBuilder builder = RestClient.builder(HttpHost.create(elasticsearchUrl))
.setHttpClientConfigCallback(httpClientBuilder -> httpClientBuilder
.setDefaultCredentialsProvider(credentialsProvider)
.setSSLContext(sslContext)
.setSSLHostnameVerifier(NoopHostnameVerifier.INSTANCE));
return new RestHighLevelClient(builder);
}
}
领域模型
使用 Spring 的 Elasticsearch 注解定义领域模型:
@Data
@Document(indexName = "products")
public class Product {
@Id
private String id;
@Field(type = FieldType.Text, name = "name")
private String name;
@Field(type = FieldType.Double, name = "price")
private Double price;
}
仓库层
创建继承 ElasticsearchRepository 的仓库接口:
@Repository
@EnableElasticsearchRepositories
public interface ProductRepository extends ElasticsearchRepository<Product, String> {
}
服务层
实现服务层来处理业务逻辑:
@Service
public class ProductService {
private final ProductRepository productRepository;
@Autowired
public ProductService(ProductRepository productRepository) {
this.productRepository = productRepository;
}
public Product saveProduct(Product product) {
return productRepository.save(product);
}
public Product findProductById(String id) {
return productRepository.findById(id).orElse(null);
}
}
测试
编写集成测试类:
@SpringBootTest
public class ProductServiceIntegrationTest {
@Autowired
private ElasticsearchOperations elasticsearchOperations;
@Autowired
private ProductService productService;
private static final String INDEX_NAME = "products";
@BeforeEach
public void setUp() {
IndexOperations indexOperations = elasticsearchOperations.indexOps(IndexCoordinates.of(INDEX_NAME));
if (indexOperations.exists()) {
indexOperations.delete();
}
// 定义 mapping
Document mapping = Document.create()
.append("properties", Document.create()
.append("name", Document.create()
.append("type", "text")
.append("analyzer", "standard"))
.append("price", Document.create()
.append("type", "double")));
// 创建索引并应用 mapping
indexOperations.create(Collections.EMPTY_MAP, mapping);
}
@Test
public void testSaveAndFindProduct() {
List<Product> products = Arrays.asList(
new Product("Test Product 1", 99.99),
new Product("Test Product 2", 199.99),
new Product("Test Product 3", 299.99)
);
List<IndexQuery> queries = products.stream()
.map(product -> new IndexQueryBuilder()
.withObject(product)
.withIndex(INDEX_NAME)
.build())
.collect(Collectors.toList());
List<IndexedObjectInformation> indexedInfos = elasticsearchOperations.bulkIndex(
queries,
IndexCoordinates.of(INDEX_NAME)
);
// 验证结果
List<String> ids = indexedInfos.stream()
.map(IndexedObjectInformation::getId)
.collect(Collectors.toList());
assertFalse(ids.isEmpty());
assertEquals(products.size(), ids.size());
}
}
结论
本指南展示了 Easysearch 与 Elasticsearch 的高度兼容性:
- 配置方式相同,仅需启用 Easysearch 的 API 兼容模式。
- 可直接使用现有 Elasticsearch 客户端。
- Maven 依赖无需更改。
- API、注解和仓库接口完全兼容。
- 现有测试代码可直接应用。
这种兼容性使得从 Elasticsearch 迁移到 Easysearch 成为一个简单、低风险的过程。Spring Boot 项目可以几乎无缝地切换到 Easysearch,同时获得其性能和资源利用方面的优势。
关于 Easysearch
INFINI Easysearch 是一个分布式的搜索型数据库,实现非结构化数据检索、全文检索、向量检索、地理位置信息查询、组合索引查询、多语种支持、聚合分析等。Easysearch 可以完美替代 Elasticsearch,同时添加和完善多项企业级功能。Easysearch 助您拥有简洁、高效、易用的搜索体验。
官网文档:https://infinilabs.cn/docs/latest/easysearch
作者:张磊,极限科技(INFINI Labs)搜索引擎研发负责人,对 Elasticsearch 和 Lucene 源码比较熟悉,目前主要负责公司的 Easysearch 产品的研发以及客户服务工作。
原文:https://infinilabs.cn/blog/2024/use-spring-boot-for-easysearch-connection/
Easysearch Java SDK 2.0.x 使用指南(一)
Easysearch • INFINI Labs 小助手 发表了文章 • 0 个评论 • 2168 次浏览 • 2024-12-14 17:50
各位 Easysearch 的小伙伴们,我们前一阵刚把 easysearch-client 更新到了 2.0.2 版本!借此详细介绍下新版客户端的使用。
新版客户端和 1.0 版本相比,完全重构,抛弃了旧版客户端的一些历史包袱,从里到外都焕然一新!不管是刚入门的小白还是经验丰富的老司机,2.0.x 客户端都能让你开发效率蹭蹭往上涨!
到底有啥新东西?
- 更轻更快: 以前的版本依赖了一堆乱七八糟的东西,现在好了,我们把那些没用的都砍掉了,客户端变得更苗条,性能也杠杠的!
- 类型安全,告别迷糊: 常用的 Easysearch API 现在都配上了强类型的请求和响应对象,再也不用担心写错参数类型了,代码也更好看了,维护起来也更省心!
- 同步异步,想咋用咋用: 所有 API 都支持同步和异步两种调用方式,不管是啥场景,都能轻松应对!
- 构建查询,跟搭积木一样简单: 我们用了流式构建器和函数式编程,构建复杂查询的时候,代码写起来那叫一个流畅,看着也舒服!
- 和 Jackson 无缝对接: 可以轻松地把你的 Java 类和客户端 API 关联起来,数据转换嗖嗖的快!
快速上手
废话不多说,咱们直接上干货!这部分教你怎么快速安装和使用 easysearch-client 2.0.2 客户端,还会演示一些基本操作。
安装
easysearch-client 2.0.2 已经上传到 Maven 中央仓库了,加到你的项目里超级方便。
最低要求: JDK 8 或者更高版本
依赖管理: 客户端内部用 Jackson 来处理对象映射。
Maven 项目
在你的 pom.xml
文件的 <dependencies>
里面加上这段:
<dependencies>
<dependency>
<groupId>com.infinilabs</groupId>
<artifactId>easysearch-client</artifactId>
<version>2.0.2</version>
</dependency>
</dependencies>
Gradle 项目
在你的 build.gradle
文件的 dependencies
里面加上这段:
dependencies {
implementation 'com.infinilabs:easysearch-client:2.0.2'
}
初始化客户端
下面这段代码演示了怎么初始化一个启用了安全通信加密和 security 的 Easysearch 客户端,看起来有点长,别慌,我们一步一步解释!
public static EasysearchClient create() throws NoSuchAlgorithmException, KeyStoreException,
KeyManagementException {
final HttpHost[] hosts = new HttpHost[]{new HttpHost("localhost", 9200, "https")};
final SSLContext sslContext = SSLContextBuilder.create()
.loadTrustMaterial(null, (chains, authType) -> true).build();
SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sslContext, NoopHostnameVerifier.INSTANCE);
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials("username", "passwowd"));
RestClient restClient = RestClient.builder(hosts)
.setHttpClientConfigCallback(httpClientBuilder ->
httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider)
.setSSLStrategy(sessionStrategy)
.disableAuthCaching()
).setRequestConfigCallback(requestConfigCallback ->
requestConfigCallback.setConnectTimeout(30000).setSocketTimeout(300000))
.build();
EasysearchTransport transport = new RestClientTransport(
restClient, new JacksonJsonpMapper());
return new EasysearchClient(transport);
}
这段代码,简单来说,就是:
- 连上 Easysearch: 我们要用 HTTPS 连接到本地的 9200 端口。
- 搞定证书: 这里为了方便,我们信任了所有证书(注意!生产环境一定要配置好你们自己的证书)。
- 填上用户名密码: 这里需要填上你的用户名和密码。
- 设置连接参数: 设置了连接超时时间(30 秒)和读取超时时间(300 秒)。
- 创建客户端: 最后,我们就创建好了一个
EasysearchClient
实例,可以开始干活了!
举个栗子:批量操作
下面的例子演示了怎么用 bulk
API 来批量索引数据:
public static void bulk() throws Exception {
String json2 = "{"
+ " \"@timestamp\": \"2023-01-08T22:50:13.059Z\","
+ " \"agent\": {"
+ " \"version\": \"7.3.2\","
+ " \"type\": \"filebeat\","
+ " \"ephemeral_id\": \"3ff1f2c8-1f7f-48c2-b560-4272591b8578\","
+ " \"hostname\": \"ba-0226-msa-fbl-747db69c8d-ngff6\""
+ " }"
+ "}";
EasysearchClient client = create();
BulkRequest.Builder br = new BulkRequest.Builder();
br.index("test1");
for (int i = 0; i < 10; i++) {
BulkOperation.Builder builder = new BulkOperation.Builder();
IndexOperation.Builder indexBuilder = new IndexOperation.Builder();
builder.index(indexBuilder.document(JsonData.fromJson(json2)).build());
br.operations(builder.build());
}
for (int i = 0; i < 10; i++) {
BulkOperation.Builder builder = new BulkOperation.Builder();
IndexOperation.Builder indexBuilder = new IndexOperation.Builder();
indexBuilder.document(JsonData.fromJson(json2)).index("test2");
builder.index(indexBuilder.build());
br.operations(builder.build());
}
for (int i = 0; i < 10; i++) {
Map<String, Object> map = new HashMap<>();
map.put("@timestamp", "2023-01-08T22:50:13.059Z");
map.put("field1", "value1");
IndexOperation.Builder indexBuilder = new IndexOperation.Builder();
indexBuilder.document(map).index("test3");
br.operations(new BulkOperation(indexBuilder.build()));
}
BulkResponse bulkResponse = client.bulk(br.build());
if (bulkResponse.errors()) {
for (BulkResponseItem item : bulkResponse.items()) {
System.out.println(item.toString());
}
}
client._transport().close();
}
这个例子里,我们一口气把数据批量索引到了 test1
、test2
和 test3
这三个索引里,
并且展示了三种在 bulk API 中构建 IndexOperation 的方式,虽然它们最终都能实现将文档索引到 Easysearch,但在使用场景和灵活性上还是有一些区别的:
这段代码的核心是利用 BulkRequest.Builder 来构建一个批量请求,并通过 br.operations(...) 方法添加多个操作。而每个操作,在这个例子里,都是一个 IndexOperation,也就是索引一个文档。IndexOperation 可以通过 IndexOperation.Builder 来创建。
三种方式的区别主要体现在如何构建 IndexOperation 里的 document 部分,也就是要索引的文档内容。
第一种方式:使用 JsonData.fromJson(json2) 且不指定索引。
特点:
使用 JsonData.fromJson(json2) 将一个 JSON 字符串直接转换成 JsonData 对象作为文档内容。
这里没有在 IndexOperation.Builder 上调用 index() 方法来指定索引名称。由于没有在每个 IndexOperation 中指定索引,这个索引名称将回退到 BulkRequest.Builder 上设置的索引,即 br.index("test1"),所以这 10 个文档都会被索引到 test1。
当你需要将一批相同结构的 JSON 文档索引到同一个索引时,这种方式比较简洁。
第二种方式:使用 JsonData.fromJson(json2) 并指定索引
特点:
同样使用 JsonData.fromJson(json2) 将 JSON 字符串转换成 JsonData 对象。
关键区别在于,这里在 IndexOperation.Builder 上调用了 index("test2"),为每个操作单独指定了索引名称。
这 10 个文档会被索引到 test2,即使 BulkRequest.Builder 上设置了 index("test1") 也没用,因为 IndexOperation 里的设置优先级更高。
当你需要将一批相同结构的 JSON 文档索引到不同的索引时,就需要使用这种方式来分别指定索引。
第三种方式:使用 Map<String, Object> 并指定索引
特点:
使用 Map<String, Object> 来构建文档内容,这种方式更加灵活,可以构建任意结构的文档。
同样在 IndexOperation.Builder 上调用了 index("test3") 指定了索引名称。
使用 new BulkOperation(indexBuilder.build()) 代替之前的 builder.index(indexBuilder.build()), 这是等价的。
这 10 个文档会被索引到 test3。
当你需要索引的文档结构不固定,或者你需要动态构建文档内容时,使用 Map 是最佳选择。例如,你可以根据不同的业务逻辑,往 Map 里添加不同的字段。
总结
这次 easysearch-client 2.0.x Java 客户端的更新真的很给力,强烈建议大家升级体验!相信我,用了新版客户端,你的开发效率绝对会提升一大截!
想要了解更多?
-
客户端 Maven 地址: https://mvnrepository.com/artifact/com.infinilabs/easysearch-client/2.0.2
- 更详细的文档和示例代码在 官网 持续更新中,请随时关注!
大家有啥问题或者建议,也欢迎随时反馈!
作者:张磊,极限科技(INFINI Labs)搜索引擎研发负责人,对 Elasticsearch 和 Lucene 源码比较熟悉,目前主要负责公司的 Easysearch 产品的研发以及客户服务工作。
highlevel client(7.10) 查询took>1000时,_shard.successful=0
回复Elasticsearch • aiolos 发起了问题 • 1 人关注 • 0 个回复 • 1693 次浏览 • 2021-02-24 15:59
es client节点设置问题 。。
Elasticsearch • rochy 回复了问题 • 3 人关注 • 1 个回复 • 3494 次浏览 • 2019-04-14 21:56
判断TransPortClient是否存活
Elasticsearch • rochy 回复了问题 • 3 人关注 • 1 个回复 • 3082 次浏览 • 2019-02-28 15:14
5.1.2 client做成单例的一直不关闭会出问题吗
Elasticsearch • novia 回复了问题 • 2 人关注 • 2 个回复 • 6762 次浏览 • 2017-06-02 10:46
Pandasticsearch: An Elasticsearch client exposing DataFrame API
Elasticsearch • onesuper 发表了文章 • 0 个评论 • 6284 次浏览 • 2016-11-08 18:02
# Create a DataFrame object
from pandasticsearch import DataFrame
df = DataFrame.from_es('http://localhost:9200', index='people')
# Print the schema(mapping) of the index
df.print_schema()
# company
# |-- employee
# |-- name: {'index': 'not_analyzed', 'type': 'string'}
# |-- age: {'type': 'integer'}
# |-- gender: {'index': 'not_analyzed', 'type': 'string'}
# Inspect the columns
df.columns
#['name', 'age', 'gender']
# Get the column
df.name
# Column('name')
# Filter
df.filter(df.age < 13).collect()
# [Row(age=12,gender='female',name='Alice'), Row(age=11,gender='male',name='Bob')]
# Project
df.filter(df.age < 25).select('name', 'age').collect()
# [Row(age=12,name='Alice'), Row(age=11,name='Bob'), Row(age=13,name='Leo')]
# Print the rows into console
df.filter(df.age < 25).select('name').show(3)
# +------+
# | name |
# +------+
# | Alice|
# | Bob |
# | Leo |
# +------+
# Sort
df.sort(df.age.asc).select('name', 'age').collect()
#[Row(age=11,name='Bob'), Row(age=12,name='Alice'), Row(age=13,name='Leo')]
# Aggregate
df[df.gender == 'male'].agg(df.age.avg).collect()
# [Row(avg(age)=12)]
# Groupby
df.groupby('gender').collect()
# [Row(doc_count=1), Row(doc_count=2)]
# Groupby and then aggregate
df.groupby('gender').agg(df.age.max).collect()
# [Row(doc_count=1, max(age)=12), Row(doc_count=2, max(age)=13)]
# Convert to Pandas object for subsequent analysis
df[df.gender == 'male'].agg(df.age.avg).to_pandas()
# avg(age)
# 0 12
使用node client报以下错误,使用transport client 就没有错误
回复Elasticsearch • Jellybean 发起了问题 • 1 人关注 • 0 个回复 • 6719 次浏览 • 2016-01-20 15:24
请问在应用中使用node client还是transport client比较好?
Elasticsearch • zttech 回复了问题 • 5 人关注 • 3 个回复 • 6144 次浏览 • 2016-01-19 14:03
highlevel client(7.10) 查询took>1000时,_shard.successful=0
回复Elasticsearch • aiolos 发起了问题 • 1 人关注 • 0 个回复 • 1693 次浏览 • 2021-02-24 15:59
5.1.2 client做成单例的一直不关闭会出问题吗
回复Elasticsearch • novia 回复了问题 • 2 人关注 • 2 个回复 • 6762 次浏览 • 2017-06-02 10:46
使用node client报以下错误,使用transport client 就没有错误
回复Elasticsearch • Jellybean 发起了问题 • 1 人关注 • 0 个回复 • 6719 次浏览 • 2016-01-20 15:24
请问在应用中使用node client还是transport client比较好?
回复Elasticsearch • zttech 回复了问题 • 5 人关注 • 3 个回复 • 6144 次浏览 • 2016-01-19 14:03
Spring Boot 集成 Easysearch 完整指南
Easysearch • INFINI Labs 小助手 发表了文章 • 0 个评论 • 2727 次浏览 • 2024-12-29 15:41
Easysearch 的很多用户都有这样的需要,之前是用的 ES,现在要迁移到 Easysearch,但是业务方使用的是 Spring Boot 集成的客户端,问是否能平滑迁移。
Easysearch 是完全兼容 Spring Boot 的,完全不用修改,本指南将探讨如何将 Spring Boot 和 ES 的 high-level 客户端 与 Easysearch 进行集成,涵盖从基础设置到实现 CRUD 操作和测试的所有内容。
服务器设置
首先,需要修改 Easysearch 节点的 easysearch.yml 文件,打开并配置这 2 个配置项:
elasticsearch.api_compatibility: true
#根据客户端版本配置版本号,我这里配置成 7.17.18
elasticsearch.api_compatibility_version: "7.17.18"
项目设置
然后,让我们设置 Maven 依赖。以下是 pom.xml
中的基本配置:
<properties>
<java.version>11</java.version>
<spring-data-elasticsearch.version>4.4.18</spring-data-elasticsearch.version>
<elasticsearch.version>7.17.18</elasticsearch.version>
</properties>
<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.data</groupId>
<artifactId>spring-data-elasticsearch</artifactId>
<version>${spring-data-elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.elasticsearch</groupId>
<artifactId>elasticsearch</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>${elasticsearch.version}</version>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
</dependencies>
客户端连接配置
完全和连接 Elasticsearch 的方式一样,不用修改:
配置 src/main/resources/application.yml 文件
spring:
elasticsearch:
rest:
uris: https://localhost:9202
username: admin
password: xxxxxxxxxxx
ssl:
verification-mode: none
连接配置类
@Configuration
public class ElasticsearchConfig extends AbstractElasticsearchConfiguration {
@Value("${spring.elasticsearch.rest.uris}")
private String elasticsearchUrl;
@Value("${spring.elasticsearch.rest.username}")
private String username;
@Value("${spring.elasticsearch.rest.password}")
private String password;
@Override
@Bean
public RestHighLevelClient elasticsearchClient() {
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY,
new UsernamePasswordCredentials(username, password));
SSLContext sslContext = SSLContexts.custom()
.loadTrustMaterial(null, (x509Certificates, s) -> true)
.build();
RestClientBuilder builder = RestClient.builder(HttpHost.create(elasticsearchUrl))
.setHttpClientConfigCallback(httpClientBuilder -> httpClientBuilder
.setDefaultCredentialsProvider(credentialsProvider)
.setSSLContext(sslContext)
.setSSLHostnameVerifier(NoopHostnameVerifier.INSTANCE));
return new RestHighLevelClient(builder);
}
}
领域模型
使用 Spring 的 Elasticsearch 注解定义领域模型:
@Data
@Document(indexName = "products")
public class Product {
@Id
private String id;
@Field(type = FieldType.Text, name = "name")
private String name;
@Field(type = FieldType.Double, name = "price")
private Double price;
}
仓库层
创建继承 ElasticsearchRepository 的仓库接口:
@Repository
@EnableElasticsearchRepositories
public interface ProductRepository extends ElasticsearchRepository<Product, String> {
}
服务层
实现服务层来处理业务逻辑:
@Service
public class ProductService {
private final ProductRepository productRepository;
@Autowired
public ProductService(ProductRepository productRepository) {
this.productRepository = productRepository;
}
public Product saveProduct(Product product) {
return productRepository.save(product);
}
public Product findProductById(String id) {
return productRepository.findById(id).orElse(null);
}
}
测试
编写集成测试类:
@SpringBootTest
public class ProductServiceIntegrationTest {
@Autowired
private ElasticsearchOperations elasticsearchOperations;
@Autowired
private ProductService productService;
private static final String INDEX_NAME = "products";
@BeforeEach
public void setUp() {
IndexOperations indexOperations = elasticsearchOperations.indexOps(IndexCoordinates.of(INDEX_NAME));
if (indexOperations.exists()) {
indexOperations.delete();
}
// 定义 mapping
Document mapping = Document.create()
.append("properties", Document.create()
.append("name", Document.create()
.append("type", "text")
.append("analyzer", "standard"))
.append("price", Document.create()
.append("type", "double")));
// 创建索引并应用 mapping
indexOperations.create(Collections.EMPTY_MAP, mapping);
}
@Test
public void testSaveAndFindProduct() {
List<Product> products = Arrays.asList(
new Product("Test Product 1", 99.99),
new Product("Test Product 2", 199.99),
new Product("Test Product 3", 299.99)
);
List<IndexQuery> queries = products.stream()
.map(product -> new IndexQueryBuilder()
.withObject(product)
.withIndex(INDEX_NAME)
.build())
.collect(Collectors.toList());
List<IndexedObjectInformation> indexedInfos = elasticsearchOperations.bulkIndex(
queries,
IndexCoordinates.of(INDEX_NAME)
);
// 验证结果
List<String> ids = indexedInfos.stream()
.map(IndexedObjectInformation::getId)
.collect(Collectors.toList());
assertFalse(ids.isEmpty());
assertEquals(products.size(), ids.size());
}
}
结论
本指南展示了 Easysearch 与 Elasticsearch 的高度兼容性:
- 配置方式相同,仅需启用 Easysearch 的 API 兼容模式。
- 可直接使用现有 Elasticsearch 客户端。
- Maven 依赖无需更改。
- API、注解和仓库接口完全兼容。
- 现有测试代码可直接应用。
这种兼容性使得从 Elasticsearch 迁移到 Easysearch 成为一个简单、低风险的过程。Spring Boot 项目可以几乎无缝地切换到 Easysearch,同时获得其性能和资源利用方面的优势。
关于 Easysearch
INFINI Easysearch 是一个分布式的搜索型数据库,实现非结构化数据检索、全文检索、向量检索、地理位置信息查询、组合索引查询、多语种支持、聚合分析等。Easysearch 可以完美替代 Elasticsearch,同时添加和完善多项企业级功能。Easysearch 助您拥有简洁、高效、易用的搜索体验。
官网文档:https://infinilabs.cn/docs/latest/easysearch
作者:张磊,极限科技(INFINI Labs)搜索引擎研发负责人,对 Elasticsearch 和 Lucene 源码比较熟悉,目前主要负责公司的 Easysearch 产品的研发以及客户服务工作。
原文:https://infinilabs.cn/blog/2024/use-spring-boot-for-easysearch-connection/
Easysearch Java SDK 2.0.x 使用指南(一)
Easysearch • INFINI Labs 小助手 发表了文章 • 0 个评论 • 2168 次浏览 • 2024-12-14 17:50
各位 Easysearch 的小伙伴们,我们前一阵刚把 easysearch-client 更新到了 2.0.2 版本!借此详细介绍下新版客户端的使用。
新版客户端和 1.0 版本相比,完全重构,抛弃了旧版客户端的一些历史包袱,从里到外都焕然一新!不管是刚入门的小白还是经验丰富的老司机,2.0.x 客户端都能让你开发效率蹭蹭往上涨!
到底有啥新东西?
- 更轻更快: 以前的版本依赖了一堆乱七八糟的东西,现在好了,我们把那些没用的都砍掉了,客户端变得更苗条,性能也杠杠的!
- 类型安全,告别迷糊: 常用的 Easysearch API 现在都配上了强类型的请求和响应对象,再也不用担心写错参数类型了,代码也更好看了,维护起来也更省心!
- 同步异步,想咋用咋用: 所有 API 都支持同步和异步两种调用方式,不管是啥场景,都能轻松应对!
- 构建查询,跟搭积木一样简单: 我们用了流式构建器和函数式编程,构建复杂查询的时候,代码写起来那叫一个流畅,看着也舒服!
- 和 Jackson 无缝对接: 可以轻松地把你的 Java 类和客户端 API 关联起来,数据转换嗖嗖的快!
快速上手
废话不多说,咱们直接上干货!这部分教你怎么快速安装和使用 easysearch-client 2.0.2 客户端,还会演示一些基本操作。
安装
easysearch-client 2.0.2 已经上传到 Maven 中央仓库了,加到你的项目里超级方便。
最低要求: JDK 8 或者更高版本
依赖管理: 客户端内部用 Jackson 来处理对象映射。
Maven 项目
在你的 pom.xml
文件的 <dependencies>
里面加上这段:
<dependencies>
<dependency>
<groupId>com.infinilabs</groupId>
<artifactId>easysearch-client</artifactId>
<version>2.0.2</version>
</dependency>
</dependencies>
Gradle 项目
在你的 build.gradle
文件的 dependencies
里面加上这段:
dependencies {
implementation 'com.infinilabs:easysearch-client:2.0.2'
}
初始化客户端
下面这段代码演示了怎么初始化一个启用了安全通信加密和 security 的 Easysearch 客户端,看起来有点长,别慌,我们一步一步解释!
public static EasysearchClient create() throws NoSuchAlgorithmException, KeyStoreException,
KeyManagementException {
final HttpHost[] hosts = new HttpHost[]{new HttpHost("localhost", 9200, "https")};
final SSLContext sslContext = SSLContextBuilder.create()
.loadTrustMaterial(null, (chains, authType) -> true).build();
SSLIOSessionStrategy sessionStrategy = new SSLIOSessionStrategy(sslContext, NoopHostnameVerifier.INSTANCE);
final CredentialsProvider credentialsProvider = new BasicCredentialsProvider();
credentialsProvider.setCredentials(AuthScope.ANY, new UsernamePasswordCredentials("username", "passwowd"));
RestClient restClient = RestClient.builder(hosts)
.setHttpClientConfigCallback(httpClientBuilder ->
httpClientBuilder.setDefaultCredentialsProvider(credentialsProvider)
.setSSLStrategy(sessionStrategy)
.disableAuthCaching()
).setRequestConfigCallback(requestConfigCallback ->
requestConfigCallback.setConnectTimeout(30000).setSocketTimeout(300000))
.build();
EasysearchTransport transport = new RestClientTransport(
restClient, new JacksonJsonpMapper());
return new EasysearchClient(transport);
}
这段代码,简单来说,就是:
- 连上 Easysearch: 我们要用 HTTPS 连接到本地的 9200 端口。
- 搞定证书: 这里为了方便,我们信任了所有证书(注意!生产环境一定要配置好你们自己的证书)。
- 填上用户名密码: 这里需要填上你的用户名和密码。
- 设置连接参数: 设置了连接超时时间(30 秒)和读取超时时间(300 秒)。
- 创建客户端: 最后,我们就创建好了一个
EasysearchClient
实例,可以开始干活了!
举个栗子:批量操作
下面的例子演示了怎么用 bulk
API 来批量索引数据:
public static void bulk() throws Exception {
String json2 = "{"
+ " \"@timestamp\": \"2023-01-08T22:50:13.059Z\","
+ " \"agent\": {"
+ " \"version\": \"7.3.2\","
+ " \"type\": \"filebeat\","
+ " \"ephemeral_id\": \"3ff1f2c8-1f7f-48c2-b560-4272591b8578\","
+ " \"hostname\": \"ba-0226-msa-fbl-747db69c8d-ngff6\""
+ " }"
+ "}";
EasysearchClient client = create();
BulkRequest.Builder br = new BulkRequest.Builder();
br.index("test1");
for (int i = 0; i < 10; i++) {
BulkOperation.Builder builder = new BulkOperation.Builder();
IndexOperation.Builder indexBuilder = new IndexOperation.Builder();
builder.index(indexBuilder.document(JsonData.fromJson(json2)).build());
br.operations(builder.build());
}
for (int i = 0; i < 10; i++) {
BulkOperation.Builder builder = new BulkOperation.Builder();
IndexOperation.Builder indexBuilder = new IndexOperation.Builder();
indexBuilder.document(JsonData.fromJson(json2)).index("test2");
builder.index(indexBuilder.build());
br.operations(builder.build());
}
for (int i = 0; i < 10; i++) {
Map<String, Object> map = new HashMap<>();
map.put("@timestamp", "2023-01-08T22:50:13.059Z");
map.put("field1", "value1");
IndexOperation.Builder indexBuilder = new IndexOperation.Builder();
indexBuilder.document(map).index("test3");
br.operations(new BulkOperation(indexBuilder.build()));
}
BulkResponse bulkResponse = client.bulk(br.build());
if (bulkResponse.errors()) {
for (BulkResponseItem item : bulkResponse.items()) {
System.out.println(item.toString());
}
}
client._transport().close();
}
这个例子里,我们一口气把数据批量索引到了 test1
、test2
和 test3
这三个索引里,
并且展示了三种在 bulk API 中构建 IndexOperation 的方式,虽然它们最终都能实现将文档索引到 Easysearch,但在使用场景和灵活性上还是有一些区别的:
这段代码的核心是利用 BulkRequest.Builder 来构建一个批量请求,并通过 br.operations(...) 方法添加多个操作。而每个操作,在这个例子里,都是一个 IndexOperation,也就是索引一个文档。IndexOperation 可以通过 IndexOperation.Builder 来创建。
三种方式的区别主要体现在如何构建 IndexOperation 里的 document 部分,也就是要索引的文档内容。
第一种方式:使用 JsonData.fromJson(json2) 且不指定索引。
特点:
使用 JsonData.fromJson(json2) 将一个 JSON 字符串直接转换成 JsonData 对象作为文档内容。
这里没有在 IndexOperation.Builder 上调用 index() 方法来指定索引名称。由于没有在每个 IndexOperation 中指定索引,这个索引名称将回退到 BulkRequest.Builder 上设置的索引,即 br.index("test1"),所以这 10 个文档都会被索引到 test1。
当你需要将一批相同结构的 JSON 文档索引到同一个索引时,这种方式比较简洁。
第二种方式:使用 JsonData.fromJson(json2) 并指定索引
特点:
同样使用 JsonData.fromJson(json2) 将 JSON 字符串转换成 JsonData 对象。
关键区别在于,这里在 IndexOperation.Builder 上调用了 index("test2"),为每个操作单独指定了索引名称。
这 10 个文档会被索引到 test2,即使 BulkRequest.Builder 上设置了 index("test1") 也没用,因为 IndexOperation 里的设置优先级更高。
当你需要将一批相同结构的 JSON 文档索引到不同的索引时,就需要使用这种方式来分别指定索引。
第三种方式:使用 Map<String, Object> 并指定索引
特点:
使用 Map<String, Object> 来构建文档内容,这种方式更加灵活,可以构建任意结构的文档。
同样在 IndexOperation.Builder 上调用了 index("test3") 指定了索引名称。
使用 new BulkOperation(indexBuilder.build()) 代替之前的 builder.index(indexBuilder.build()), 这是等价的。
这 10 个文档会被索引到 test3。
当你需要索引的文档结构不固定,或者你需要动态构建文档内容时,使用 Map 是最佳选择。例如,你可以根据不同的业务逻辑,往 Map 里添加不同的字段。
总结
这次 easysearch-client 2.0.x Java 客户端的更新真的很给力,强烈建议大家升级体验!相信我,用了新版客户端,你的开发效率绝对会提升一大截!
想要了解更多?
-
客户端 Maven 地址: https://mvnrepository.com/artifact/com.infinilabs/easysearch-client/2.0.2
- 更详细的文档和示例代码在 官网 持续更新中,请随时关注!
大家有啥问题或者建议,也欢迎随时反馈!
作者:张磊,极限科技(INFINI Labs)搜索引擎研发负责人,对 Elasticsearch 和 Lucene 源码比较熟悉,目前主要负责公司的 Easysearch 产品的研发以及客户服务工作。
Pandasticsearch: An Elasticsearch client exposing DataFrame API
Elasticsearch • onesuper 发表了文章 • 0 个评论 • 6284 次浏览 • 2016-11-08 18:02
# Create a DataFrame object
from pandasticsearch import DataFrame
df = DataFrame.from_es('http://localhost:9200', index='people')
# Print the schema(mapping) of the index
df.print_schema()
# company
# |-- employee
# |-- name: {'index': 'not_analyzed', 'type': 'string'}
# |-- age: {'type': 'integer'}
# |-- gender: {'index': 'not_analyzed', 'type': 'string'}
# Inspect the columns
df.columns
#['name', 'age', 'gender']
# Get the column
df.name
# Column('name')
# Filter
df.filter(df.age < 13).collect()
# [Row(age=12,gender='female',name='Alice'), Row(age=11,gender='male',name='Bob')]
# Project
df.filter(df.age < 25).select('name', 'age').collect()
# [Row(age=12,name='Alice'), Row(age=11,name='Bob'), Row(age=13,name='Leo')]
# Print the rows into console
df.filter(df.age < 25).select('name').show(3)
# +------+
# | name |
# +------+
# | Alice|
# | Bob |
# | Leo |
# +------+
# Sort
df.sort(df.age.asc).select('name', 'age').collect()
#[Row(age=11,name='Bob'), Row(age=12,name='Alice'), Row(age=13,name='Leo')]
# Aggregate
df[df.gender == 'male'].agg(df.age.avg).collect()
# [Row(avg(age)=12)]
# Groupby
df.groupby('gender').collect()
# [Row(doc_count=1), Row(doc_count=2)]
# Groupby and then aggregate
df.groupby('gender').agg(df.age.max).collect()
# [Row(doc_count=1, max(age)=12), Row(doc_count=2, max(age)=13)]
# Convert to Pandas object for subsequent analysis
df[df.gender == 'male'].agg(df.age.avg).to_pandas()
# avg(age)
# 0 12