前言
为了解决复杂的查询业务,Lucene给我们提供了一个查询语义分析器,一套完整的语法规则,能够满足大部分的查询需求,而不用关心底层是使用什么Query实现类,就好比写sql一样。 Lucene推荐我们使用QueryParser,而不是各种Query的实现类。但是,QueryParser不能满足所有的查询有求,比如多文档域联合查询 。有时候还是需要使用到Query的相关实现类,好了,下面我们就来看看QueryParser能够解析什么语法,解决什么问题,以及多文档域的查询
直接上代码
每个语法都可以多测试一遍,看看结果,能够加深你的理解,因为这边测试的实在是多,测试结果我就不贴了;
ps:各个查询语义可以交叉使用的,下面代码有部分也用到了,但是这边因为是写的例子,为了能更好的区分每个语义的作用,所有没有做太多的尝试
/**
* @author kl by 2016/3/20
* @boke www.kailing.pub
*/
public class QueryTest {
//索引目录
String indexDir="E:\\LuceneIndex";
//测试数据目录
String dataDir="E:\\LuceneTestData";
/**
* Lucence5.5返回IndexWriter实例
* @param directory
* @return
*/
public IndexWriter getIndexWriter(Directory directory){
Analyzer analyzer=new StandardAnalyzer();
IndexWriterConfig writerConfig=new IndexWriterConfig(analyzer);
IndexWriter writer=null;
try {
writer =new IndexWriter(directory,writerConfig);
}catch (Exception e){
e.printStackTrace();
}
return writer;
}
public Directory getDirctory(String indexDir){
Directory directory=null;
try {
directory= FSDirectory.open(Paths.get(indexDir));
}catch (IOException e){
e.printStackTrace();
}
return directory;
}
@Test
public void TestIndexer()throws Exception{
File[] files= new File(dataDir).listFiles();
IndexWriter writer=getIndexWriter(getDirctory(indexDir));
for(File file:files){
Document doc=new Document();
doc.add(new TextField("filePath",file.getCanonicalPath(), Field.Store.YES));
doc.add(new TextField("context",new FileReader(file)));
writer.addDocument(doc);
}
System.out.println("总共添加了"+writer.numDocs()+"个文档");
writer.close();
}
@Test
public void testSearcher()throws Exception{
IndexReader reader= DirectoryReader.open(getDirctory(indexDir));
IndexSearcher searcher=new IndexSearcher(reader);
QueryParser queryParser=new QueryParser("context",new StandardAnalyzer());
Query queryw=queryParser.parse("Licensor");//完整匹配分词查询
/**
* 通配符 ?,*的使用
*/
Query queryy=queryParser.parse("Lice?sor");//使用?匹配单个字符查询
Query queryx=queryParser.parse("L*r");//使用*匹配多个字符查询
/**
* 布尔运算AND, OR,NOT,+,-的使用,注意:一定要是大写的AND和OR,NOT
*/
Query queryo=queryParser.parse("Licensor OR ce*");//使用OR联合多关键字查询,也可用空格代替OR
Query queryoo=queryParser.parse(" Licensor ce*");//这个和使用OR一样的效果
Query queryjia=queryParser.parse("+Licensor Wildcard");//+代表必须的条件,搜索文档必须包含Licensor 可能有Wildcard
Query querya=queryParser.parse("Licensor AND ce* AND Licenso?");//使用AND取多个关键字的并集查询
Query queryNot=queryParser.parse("'Lincensor Apache' NOT 'Apache Licensor'");//搜索Lincensor Apache而不是Apache Licensor
Query queryjian=queryParser.parse("'Lincensor Apache' - 'Apache Licensor'");//"-"同NOT的效果一样
/**
* 使用正则表达式查询
*/
Query queryRegular=queryParser.parse("/[Lab]icensor/");//这个匹配Lincensor,aicensor,bicensor分词
Query queryRegularr=queryParser.parse("/[Lab]icenso[a-z]/");//根据需要可以更灵活的使用
/**
* 使用~模糊匹配查询
* 这个要和*号的用法区分下,*号完整通配多个字符查询,而~不是简单的通配,这个模糊匹配和Lucene的评分有关
*/
Query queryFuzzy=queryParser.parse("icensor~");//可以查到Licensor关键字,而queryParser.parse("icensor*")查不到
Query queryFuzzyparam=queryParser.parse("Licens~1");//~后面可加0-2的整数来制定模糊匹配度,默认不加为1
Query queryFuzzyParam=queryParser.parse("Licens cens ~0");//~还可以模糊匹配差异化N字符数的多个关键字
/**
* 范围查询,多用于数字和时间的查询
*/
Query queryRange =queryParser.parse("{abc TO Licens}");//{}abc与Licenszhi间的文件,不包含
Query queryRangex =queryParser.parse("[abc TO Licens]");//{}abc与Licenszhi间的文件,包含本身
/**
* 关键字加权处理查询
*/
//默认为1,可加权可降权,可通过加权处理给匹配的结果排序
Query queryBoosting =queryParser.parse("Licensor Wildcard^4 ");
/**
* Grouping组合查询
*/
Query queryGrouping =queryParser.parse("(+Licensor +Wildcard) AND easier");//可使用()组合多个条件查询
//ps: 查询部分字符需要转义处理,如(+ - && || ! ( ) { } [ ] ^ " ~ * ? : \ /)
/**
* 使用MultiFieldQueryParser进行多个文档域查询
*/
Map boost=new HashMap();
boost.put("filePath",1.5F);//设置文档域的权值
boost.put("context",2F);
QueryParser multiField=new MultiFieldQueryParser(new String[]{"filePath","context"},new StandardAnalyzer(),boost);
Query queryq=multiField.parse("lucenetestdata");
TopDocs topDocs= searcher.search(queryq,10);
System.out.println("查询结果共有"+topDocs.totalHits+"条");
for(ScoreDoc scoreDoc:topDocs.scoreDocs){
Document document=searcher.doc(scoreDoc.doc);
System.out.println(document.get("filePath")+"--评分:"+scoreDoc.score);
}
}
}
ps:代码中有大量注释,有些不一定理解到位了,深入了解 请参考官方说明:
https://lucene.apache.org/core ... rches
原文地址:http://www.kailing.pub/article/index/arcid/79.html
[尊重社区原创,转载请保留或注明出处]
本文地址:http://searchkit.cn/article/91
本文地址:http://searchkit.cn/article/91